4 resultados para slifetime-based garbage collection
em Greenwich Academic Literature Archive - UK
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation point of view? In the wake of major maritime disasters such as the Herald of Free Enterprise and the Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerned with the evacuation of passengers and crew at sea are receiving renewed interest. In the maritime industry, ship evacuation models offer the promise to quickly and efficiently bring evacuation considerations into the design phase, while the ship is "on the drawing board". maritimeEXODUS-winner of the BCS, CITIS and RINA awards - is such a model. Features such as the ability to realistically simulate human response to fire, the capability to model human performance in heeled orientations, a virtual reality environment that produces realistic visualisations of the modelled scenarios and with an integrated abandonment model, make maritimeEXODUS a truly unique tool for assessing the evacuation capabilities of all types of vessels under a variety of conditions. This paper describes the maritimeEXODUS model, the SHEBA facility from which data concerning passenger/crew performance in conditions of heel is derived and an example application demonstrating the models use in performing an evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033.
Resumo:
This paper presents a framework for Historical Case-Based Reasoning (HCBR) which allows the expression of both relative and absolute temporal knowledge, representing case histories in the real world. The formalism is founded on a general temporal theory that accommodates both points and intervals as primitive time elements. A case history is formally defined as a collection of (time-independent) elemental cases, together with its corresponding temporal reference. Case history matching is two-fold, i.e., there are two similarity values need to be computed: the non-temporal similarity degree and the temporal similarity degree. On the one hand, based on elemental case matching, the non-temporal similarity degree between case histories is defined by means of computing the unions and intersections of the involved elemental cases. On the other hand, by means of the graphical presentation of temporal references, the temporal similarity degree in case history matching is transformed into conventional graph similarity measurement.
Resumo:
Evacuation analysis of passenger and commercial shipping can be undertaken using computer-based simulation tools such as maritimeEXODUS. These tools emulate human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. If these tools and procedures are to be applied to naval vessels there is a clear requirement to understand the behaviour of well-trained naval personnel interacting with the fixtures and fittings that are exclusive to warships. Human factor trials using Royal Navy training facilities were recently undertaken to collect data to improve our understanding of the performance of naval personnel in warship environments. The trials were designed and conducted by staff from the Fire Safety Engineering Group (FSEG) of the University of Greenwich on behalf of the Sea Technology Group (STG), Defence Procurement Agency. The trials involved a selection of RN volunteers with sea-going experience in warships, operating and traversing structural components under different angles of heel. This paper describes the trials and some of the collected data.
Resumo:
This paper introduces a mechanism for representing and recognizing case history patterns with rich internal temporal aspects. A case history is characterized as a collection of elemental cases as in conventional case-based reasoning systems, together with the corresponding temporal constraints that can be relative and/or with absolute values. A graphical representation for case histories is proposed as a directed, partially weighted and labeled simple graph. In terms of such a graphical representation, an eigen-decomposition graph matching algorithm is proposed for recognizing case history patterns.