10 resultados para side coupling
em Greenwich Academic Literature Archive - UK
Resumo:
In fluid mechanics, it is well accepted that the Euler equation is one of the reduced forms of the Navier-Stokes equation by truncating the viscous effect. There are other truncation techniques currently being used in order to truncate the Navier-Stokes equation to a reduced form. This paper describes one such technique, suitable for adaptive domain decomposition methods for the solution of viscous flow problems. The physical domain of a viscous flow problem is partitioned into viscous and inviscid subdomains without overlapping regions, and the technique is embedded into a finite volume method. Some numerical results are provided for a flat plate and the NACA0012 aerofoil. Issues related to distributed computing are discussed.
Resumo:
A defect equation for the coupling of nonlinear subproblems defined in nonoverlapped subdomains arise in domain decomposition methods is presented. Numerical solutions of defect equations by means of quasi-Newton methods are considered.
Resumo:
Aerodynamic generation of sound is governed by the Navier–Stokes equations while acoustic propagation in a non-uniform medium is effectively described by the linearised Euler equations. Different numerical schemes are required for the efficient solution of these two sets of equations, and therefore, coupling techniques become an essential issue. Two types of one-way coupling between the flow solver and the acoustic solver are discussed: (a) for aerodynamic sound generated at solid surfaces, and (b) in the free stream. Test results indicate how the coupling achieves the necessary accuracy so that Computational Fluid Dynamics codes can be used in aeroacoustic simulations.
Resumo:
A numerical scheme for coupling temperature and concentration fields in a general solidification model is presented. A key feature of this scheme is an explicit time stepping used in solving the governing thermal and solute conservation equations. This explicit approach results in a local point-by-point coupling scheme for the temperature and concentration and avoids the multi-level iteration required by implicit time stepping schemes. The proposed scheme is validated by predicting the concentration field in a benchmark solidification problem. Results compare well with an available similarity solution. The simplicity of the proposed explicit scheme allows for the incorporation of complex microscale models into a general solidification model. This is demonstrated by investigating the role of dendrite coarsening on the concentration field in the solidification benchmark problem.
Resumo:
Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. The critical aspect in the manufacture of the optical backplane is the successful coupling between VCSEL (Vertical Cavity Surface Emitting Laser) device and embedded waveguide in the OECB. Optical performance will be affected by CTE mismatch in the material properties, and manufacturing tolerances. This paper will discuss results from a multidisciplinary research project involving both experimentation and modelling. Key process parameters are being investigated using Design of Experiments and Finite Element Modelling. Simulations have been undertaken that predict the temperature in the VCSEL during normal operation, and the subsequent misalignment that this imposes. The results from the thermomechanical analysis are being used with optimisation software and the experimental DOE (Design of Experiments) to identify packaging parameters that minimise misalignment. These results are also imported into an optical model which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the thermomechanical and optical models will be discussed as will the experimental results from the DOE.
Resumo:
This paper describes hybrid mathematical model which couples the mechanics of the mass/spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. A discussion of the coupling method is presented including remarks on the errors encountered intrinsic to the discretisation scheme. The numerical results of a vibrating rubber band and a vibrating paper fibre are compared to their experimental counterparts. The fundamental frequencies of the acoustic signals are compared showing a close agreement between the experimental and numerical results
Resumo:
In this paper, a method for the integration of several numerical analytical techniques that are used in microsystems design and failure analysis is presented. The analytical techniques are categorized into four groups in the discussion, namely the high-fidelity analytical tools, i.e. finite element (FE) method, the fast analytical tools referring to reduced order modeling (ROM); the optimization tools, and probability based analytical tools. The characteristics of these four tools are investigated. The interactions between the four tools are discussed and a methodology for the coupling of these four tools is offered. This methodology consists of three stages, namely reduced order modeling, deterministic optimization and probabilistic optimization. Using this methodology, a case study for optimization of a solder joint is conducted. It is shown that these analysis techniques have mutual relationship of interaction and complementation. Synthetic application of these techniques can fully utilize the advantages of these techniques and satisfy various design requirements. The case study shows that the coupling method of different tools provided by this paper is effective and efficient and it is highly relevant in the design and reliability analysis of microsystems
Resumo:
A computational model for the interrelated phenomena in the process of vacuum arc remelting is analyzed and adjusted of optimal accuracy and computation time. The decision steps in this case study are offered as an example how the coupling in models of similar processes can be addressed. Results show dominance of the electromagnetic forces over buoyancy and inertia for the investigated process conditions.
Resumo:
The main sources of financing for small and medium sized enterprises (SMEs) are equity (internally generated cash), trade credit paid on time, long and short term bank credits, delayed payment on trade credit and other debt. The marginal costs of each financing instrument are driven by asymmetric information (cost of gathering and analysing information) and transactions costs associated with non-payment (costs of collecting and selling collateral). According to the Pecking Order Theory, firms will choose the cheapest source in terms of cost. In the case of the static trade-off theory, firms choose finance so that the marginal costs across financing sources are all equal, thus an additional Euro of financing is obtained from all the sources whereas under the Pecking Order Theory the source is determined by how far down the Pecking Order the firm is presently located. In this paper, we argue that both of these theories miss the point that the marginal costs are dependent of the use of the funds, and the asset side of the balance sheet primarily determines the financing source for an additional Euro. An empirical analysis on a unique dataset of Portuguese SME's confirms that the composition of the asset side of the balance sheet has an impact of the type of financing used and the Pecking Order Theory and the traditional Static Trade-off theory are rejected.
Resumo:
Based on the IMP research tradition this paper regards relationships and networks as key issues in the product development and supply management agenda. Within business networks, co-development is only possible to be analysed when emphasis is placed on interdependences and interactive relationships. Co-development usually implies close relationships that allow companies to rely on each other's resources. Close relationships imply interdependences, which may improve companies' technical and product development. By looking at the actual interactions - between a UK company and its Chinese suppliers - that led to an innovative solution and a successful product launch, evolving relationship patterns are identified and analysed in a case study. Both the literature review and case study findings highlight the importance of the 'guanxi' concept (meaning interpersonal relationships in Mandarin) when analysing business-to-business networks in China. Hence, it is suggested that guanxi-based thinking and acting should be incorporated into the interaction model when considering business networking that embrace China. 'Guanxi' broadens the validity of the interaction model, in terms of geographical proximity, and deepens its theoretical base. The case study provides valuable insights for supply management under a product development context in China. In practice, the main point of interest is that Chinese suppliers are important 'resource' providers as well as 'network' providers. Hence, it is suggested that guanxi practice should be reflected into theoretical developments.