2 resultados para shrink
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper we propose a case base reduction technique which uses a metric defined on the solution space. The technique utilises the Generalised Shepard Nearest Neighbour (GSNN) algorithm to estimate nominal or real valued solutions in case bases with solution space metrics. An overview of GSNN and a generalised reduction technique, which subsumes some existing decremental methods, such as the Shrink algorithm, are presented. The reduction technique is given for case bases in terms of a measure of the importance of each case to the predictive power of the case base. A trial test is performed on two case bases of different kinds, with several metrics proposed in the solution space. The tests show that GSNN can out-perform standard nearest neighbour methods on this set. Further test results show that a caseremoval order proposed based on a GSNN error function can produce a sparse case base with good predictive power.
Resumo:
Encapsulant curing using a Variable Frequency Microwave (VFM) system is analysed numerically. Thermosetting polymer encapsulant materials require an input of heat energy to initiate the cure process. In this article, the heating is considered to be performed by a novel microwave system, able to perform the curing process more rapidly than conventional techniques. Thermal stresses are induced when packages containing materials with differing coefficients of thermal expansion are heated, and cure stresses are induced as thermosetting polymer materials shrink during the cure process. These stresses are developed during processing and remain as residual stresses within the component after the manufacturing process is complete. As residual stresses will directly affect the reliability of the device, it is necessary to assess their magnitude and the effect on package reliability. A coupled multiphysics model has been developed to numercially analyse the microwave curing process. In order to obtain a usefully accurate model of this process, a holistic approach has been taken, in which the process is not considered to be a sequence of discrete steps, but as a complex coupled system. An overview of the implemented numerical model is presented, with particular focus paid to analysis of induced thermal stresses. Results showing distribution of stresses within an idealised microelectronics package are presented and discussed.