5 resultados para self-evaluation
em Greenwich Academic Literature Archive - UK
Resumo:
This paper presents an investigation into dynamic self-adjustment of task deployment and other aspects of self-management, through the embedding of multiple policies. Non-dedicated loosely-coupled computing environments, such as clusters and grids are increasingly popular platforms for parallel processing. These abundant systems are highly dynamic environments in which many sources of variability affect the run-time efficiency of tasks. The dynamism is exacerbated by the incorporation of mobile devices and wireless communication. This paper proposes an adaptive strategy for the flexible run-time deployment of tasks; to continuously maintain efficiency despite the environmental variability. The strategy centres on policy-based scheduling which is informed by contextual and environmental inputs such as variance in the round-trip communication time between a client and its workers and the effective processing performance of each worker. A self-management framework has been implemented for evaluation purposes. The framework integrates several policy-controlled, adaptive services with the application code, enabling the run-time behaviour to be adapted to contextual and environmental conditions. Using this framework, an exemplar self-managing parallel application is implemented and used to investigate the extent of the benefits of the strategy
Resumo:
This paper describes work towards the deployment of self-managing capabilities into an advanced middleware for automotive systems. The middleware will support a range of futuristic use-cases requiring context-awareness and dynamic system configuration. Several use-cases are described and their specific context-awareness requirements identified. The discussion is accompanied by a justification for the selection of policy-based computing as the autonomics technique to drive the self-management. The specific policy technology to be deployed is described briefly, with a focus on its specific features that are of direct relevance to the middleware project. A selected use-case is explored in depth to illustrate the extent of dynamic behaviour achievable in the proposed middleware architecture, which is composed of several policy-configured services. An early demonstration application which facilitates concept evaluation is presented and a sequence of typical device-discovery events is worked through
Resumo:
This paper describes work towards the deployment of flexible self-management into real-time embedded systems. A challenging project which focuses specifically on the development of a dynamic, adaptive automotive middleware is described, and the specific self-management requirements of this project are discussed. These requirements have been identified through the refinement of a wide-ranging set of use cases requiring context-sensitive behaviours. A sample of these use-cases is presented to illustrate the extent of the demands for self-management. The strategy that has been adopted to achieve self-management, based on the use of policies is presented. The embedded and real-time nature of the target system brings the constraints that dynamic adaptation capabilities must not require changes to the run-time code (except during hot update of complete binary modules), adaptation decisions must have low latency, and because the target platforms are resource-constrained the self-management mechanism have low resource requirements (especially in terms of processing and memory). Policy-based computing is thus and ideal candidate for achieving the self-management because the policy itself is loaded at run-time and can be replaced or changed in the future in the same way that a data file is loaded. Policies represent a relatively low complexity and low risk means of achieving self-management, with low run-time costs. Policies can be stored internally in ROM (such as default policies) as well as externally to the system. The architecture of a designed-for-purpose powerful yet lightweight policy library is described. A suitable evaluation platform, supporting the whole life-cycle of feasibility analysis, concept evaluation, development, rigorous testing and behavioural validation has been devised and is described.
Resumo:
This paper describes a methodology for deploying flexible dynamic configuration into embedded systems whilst preserving the reliability advantages of static systems. The methodology is based on the concept of decision points (DP) which are strategically placed to achieve fine-grained distribution of self-management logic to meet application-specific requirements. DP logic can be changed easily, and independently of the host component, enabling self-management behavior to be deferred beyond the point of system deployment. A transparent Dynamic Wrapper mechanism (DW) automatically detects and handles problems arising from the evaluation of self-management logic within each DP and ensures that the dynamic aspects of the system collapse down to statically defined default behavior to ensure safety and correctness despite failures. Dynamic context management contributes to flexibility, and removes the need for design-time binding of context providers and consumers, thus facilitating run-time composition and incremental component upgrade.
Resumo:
This paper describes a highly flexible component architecture, primarily designed for automotive control systems, that supports distributed dynamically- configurable context-aware behaviour. The architecture enforces a separation of design-time and run-time concerns, enabling almost all decisions concerning runtime composition and adaptation to be deferred beyond deployment. Dynamic context management contributes to flexibility. The architecture is extensible, and can embed potentially many different self-management decision technologies simultaneously. The mechanism that implements the run-time configuration has been designed to be very robust, automatically and silently handling problems arising from the evaluation of self- management logic and ensuring that in the worst case the dynamic aspects of the system collapse down to static behavior in totally predictable ways.