2 resultados para scaling relations
em Greenwich Academic Literature Archive - UK
Resumo:
Given a relation α (a binary sociogram) and an a priori equivalence relation π, both on the same set of individuals, it is interesting to look for the largest equivalence πo that is contained in and is regular with respect to α. The equivalence relation πo is called the regular interior of π with respect to α. The computation of πo involves the left and right residuals, a concept that generalized group inverses to the algebra of relations. A polynomial-time procedure is presented (Theorem 11) and illustrated with examples. In particular, the regular interior gives meet in the lattice of regular equivalences: the regular meet of regular equivalences is the regular interior of their intersection. Finally, the concept of relative regular equivalence is defined and compared with regular equivalence.
Resumo:
This paper presents a numerical study of the Reynolds number and scaling effects in microchannel flows. The configuration includes a rectangular, high-aspect ratio microchannel with heat sinks, similar to an experimental setup. Water at ambient temperature is used as a coolant fluid and the source of heating is introduced via electronic cartridges in the solids. Two channel heights, measuring 0.3 mm and 1 mm are considered at first. The Reynolds number varies in a range of 500-2200, based on the hydraulic diameter. Simulations are focused on the Reynolds number and channel height effects on the Nusselt number. It is found that the Reynolds number has noticeable influences on the local Nusselt number distributions, which are in agreement with other studies. The numerical predictions of the dimensionless temperature of the fluid agree fairly well with experimental measurements; however the dimensionless temperature of the solid does exhibit a significant discrepancy near the channel exit, similar to those reported by other researchers. The present study demonstrates that there is a significant scaling effect at small channel height, typically 0.3 mm, in agreement with experimental observations. This scaling effect has been confirmed by three additional simulations being carried out at channel heights of 0.24 mm, 0.14 mm and 0.1 mm, respectively. A correlation between the channel height and the normalized Nusselt number is thus proposed, which agrees well with results presented.