4 resultados para root initiation
em Greenwich Academic Literature Archive - UK
Resumo:
Tony Mann provides a review of the book: Barry Mazur, Imagining Numbers: (Particularly the Square Root of Minus Fifteen), London: Allen Lane, 2003, ISBN: 0713996307
Resumo:
The corrosion of steel reinforcement bars in reinforced concrete structures exposed to severe marine environments usually is attributed to the aggressive nature of chloride ions. In some cases in practice corrosion has been observed to commence already within a few years of exposure even with considerable concrete cover to the reinforcement and apparently high quality concretes. However, there are a number of other cases in practice for which corrosion initiation took much longer, even in cases with quite modest concrete cover and modest concrete quality. Many of these structures show satisfactory long-term structural performance, despite having high levels of localized chloride concentrations at the reinforcement. This disparity was noted already more than 50 years ago, but appears still not fully explained. This paper presents a systematic overview of cases reported in the engineering and corrosion literature and considers possible reasons for these differences. Consistent with observations by others, the data show that concretes made from blast furnace cements have better corrosion durability properties. The data also strongly suggest that concretes made with limestone or non-reactive dolomite aggregates or sufficiently high levels of other forms of calcium carbonates have favourable reinforcement corrosion properties. Both corrosion initiation and the onset of significant damage are delayed. Some possible reasons for this are explored briefly.
Resumo:
Evaluation of the cytotoxicity of an ethanolic root extract of Sideroxylonfoetidissimum subsp. gaumeri (Sapotaceae) revealed activity against the murine macrophage-like cell line RAW 264.7. Systematic bioassay-guided fractionation of this extract gave an active saponin-containing fraction from which four saponins were isolated. Use of 1D ((1)H, (13)C, DEPT135) and 2D (COSY, TOCSY, HSQC, and HMBC) NMR, mass spectrometry and sugar analysis gave their structures as 3-O-(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-beta-D-glucopyranosyl-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, 3-O-(beta-D-glucopyranosyl-(1-->6)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, and the known compound, 3-O-beta-D-glucopyranosyl-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-protobassic acid. Two further saponins were obtained from the same fraction, but as a 5:4 mixture comprising 3-O-(beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)[beta-D-apiofuranosyl-(1-->3)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid and 3-O-(beta-D-apiofuranosyl-(1-->3)-beta-D-glucopyranosyl)-28-O-(alpha-L-rhamnopyranosyl-(1-->3)[beta-D-xylopyranosyl-(1-->4)]-beta-D-xylopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranosyl)-16alpha-hydroxyprotobassic acid, respectively. This showed greater cytotoxicity (IC(50)=11.9+/-1.5 microg/ml) towards RAW 264.7 cells than the original extract (IC(50)=39.5+/-4.1 microg/ml), and the saponin-containing fraction derived from it (IC(50)=33.7+/-6.2 microg/ml).
Resumo:
The flora of the Yucatan peninsula (Mexico) includes approximately 3000 plant species. Sideroxylon foetidissimum Jacq. subsp. gaumeri (Sapotaceae) is an endemic plant to the Yucatan peninsula; its fruit is edible and local people use the plant for medicinal purposes, although no details on its preparation or application are available [1,2]. A preliminary cytotoxic evaluation of the ethanolic root extract of S. foetidissimum revealed a potent activity against murine macrophage like cell line RAW 264.7 (IC50=39.54±4.11µg/mL). The systematic bioassay-guided fractionation of the extract resulted in the identification of the active saponin-containing fraction (IC50=33.69±6.19µg/mL). Four new triterpenoid saponins and a 1:1 mixture of two saponins were isolated from the active saponin- containing fraction. The evaluation of their cytotoxic activity revealed no activity for the tested pure saponins; however, the 1:1 mixture of saponins showed a potent activity (IC50=11.91±1.49µg/mL). The isolation of the saponins was carried out using semi-preparative HPLC. The structural assignments of the pure saponins were based on 1D (1H and 13C and DEPT-135) and 2D (COSY, HMBC, HSQC and TOCSY) NMR and mass spectrometry analyses. In this presentation, the isolation, identification and cytotoxic activity of the isolated compounds is discussed in more detail.