12 resultados para release planning
em Greenwich Academic Literature Archive - UK
Resumo:
As announced in the November 2000 issue of MathStats&OR [1], one of the projects supported by the Maths, Stats & OR Network funds is an international survey of research into pedagogic issues in statistics and OR. I am taking the lead on this and report here on the progress that has been made during the first year. A paper giving some background to the project and describing initial thinking on how it might be implemented was presented at the 53rd session of the International Statistical Institute in Seoul, Korea, in August 2001 in a session on The future of statistics education research [2]. It sounded easy. I considered that I was something of an expert on surveys having lectured on the topic for many years and having helped students and others who were doing surveys, particularly with the design of their questionnaires. Surely all I had to do was to draft a few questions, send them electronically to colleagues in statistical education who would be only to happy to respond, and summarise their responses? I should have learnt from my experience of advising all those students who thought that doing a survey was easy and to whom I had to explain that their ideas were too ambitious. There are several inter-related stages in survey research and it is important to think about these before rushing into the collection of data. In the case of the survey in question, this planning stage revealed several challenges. Surveys are usually done for a purpose so even before planning how to do them, it is advisable to think about the final product and the dissemination of results. This is the route I followed.
Resumo:
A coated matrix tablet formulation has been used to develop controlled release diltiazem HCl (DIL) tablets. The developed drug delivery system provided prolonged drug release rates over a defined period of time. DIL tablets prepared using dry mixing and direct compression and the core consisted of hydrophilic and hydrophobic polymers such as hydroxypropylmethylcellulose (HPMC), Eudragits RLPO/RSPO, microcrystalline cellulose, and lactose. Tablets were coated with Eudragit NE 30D, and the influence of varying the inert hydrophobic polymers and the amount of the coating polymer were investigated. The release profile of the developed formulation was described by the Higuchi model. Stability trials up to 6 months displayed excellent reproducibility.
Resumo:
The aim of the current study was to evaluate the impact of chitosan derivatives, namely N-octyl-chitosan and N-octyl-O-sulfate chitosan, incorporated in calcium phosphate implants to the release profiles of model drugs. The rate and extent of calcein (on M.W. 650 Da) ED, and FITC-dextran (M.W. 40 kDa) on in vitro release were monitored by fluorescence spectroscopy. Results show that calcein release is affected by the type of chitosan derivative used. A higher percentage of model drug was released when the hydrophilic polymer N-octyl-sulfated chitosan was present in the tablets compared with the tablets containing the hydrophobic polymer N-octyl-chitosan. The release profiles of calcein or FD from tablets containing N-octyl-O-sulfate revealed a complete release for FD after 120 h compared with calcein where 20% of the drug was released over the same time period. These results suggest that the difference in the release profiles observed from the implants is dependent on the molecular weight of the model drugs. These data indicate the potential of chitosan derivatives in controlling the release profile of active compounds from calcium phosphate implants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.
Resumo:
The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance. Ex vivo mucoadhesion was assessed using porcine gingival tissue and the peak detachment forces were found to be suitable for a buccal adhesive tablet with a maximum of 1.5N approximately. The effect of formulation composition on the release pattern was also investigated. Most formulations showed theophylline controlled release profiles depended on the grade and polymer ratio. The release mechanisms were found to fit Peppas' kinetic model over a period of 5h. In general the majority of the developed formulations presented suitable adhesion and controlled drug release. Copyright © 2010 Elsevier B.V. All rights reserved.
Resumo:
In recent years, the use of swelling polymeric matrices for the encapsulation and controlled release of protein drugs has received significant attention. The purpose of the present study was to investigate the release of albumin, a model protein from alginate/hydroxypropyl-methylcellulose (HPMC) gel beads. A hydrogel system comprised of two natural, hydrophilic polymers; sodium alginate and HPMC was studied as a carrier of bovine serum albumin (BSA) which was used as a model protein. The morphology, bead size and the swelling ratio were studied in different physical states; fully swollen, dried and reswollen using scanning electron microscopy and image analysis. Finally the effect of different alginate/HPMC ratios on the BSA release profile in physiological saline solution was investigated. Swelling experiments revealed that the bead diameter increases with the viscosity of the alginate solution while the addition of HPMC resulted in a significant increase of the swelling ratio. The BSA release patterns showed that the addition of HPMC increased the protein-release rate while the release mechanism fitted the Peppas model. Alginate/HPMC beads prepared using the ionic gelation exhibited high BSA loading efficiency for all formulations. The presence of HPMC increased the swelling ability of the alginate beads while the particle size remained unaffected. Incorporation of HPMC in the alginate gels also resulted in improved BSA release in physiological saline solution. All formulations presented a non-Fickian release mechanism described by the Peppas model. In addition, the implementation of non-parametric tests showed significant differences in the release patterns between the alginate/HPMC and the pure alginate beads, respectively.
Resumo:
Cylindrical specimens (6 mm high x 4 mm diameter) of the endodontic grade glass-ionomer (Ketac Endo) were exposed to various media for 1 week, after which changes in their mass, pH of storage medium, and ion release were determined. In water, this cement was shown to release reasonable amounts of sodium, aluminium and silicon, together with smaller amounts of calcium and phosphorus, as well as taking up 2.41% by mass of water. A comparison with the restorative grade materials (Ketac Molar, ex 3M ESPE and Fuji IX, ex GC) showed both ion release and water uptake to be greater. All three cements shifted pH from 7 to around 6 with no significant differences between them. Other storage media were found to alter the pattern of ion release. Lactic acid caused an increase, whereas both saturated calcium hydroxide and 0.6% sodium hypochlorite, caused decreases. This suppression of ion-release may be significant clinically. Aluminium is the most potentially hazardous of the ions involved but amounts released were low compared with levels previously reported to show biological damage.
Resumo:
As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour
Resumo:
Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.
Resumo:
There is now a broad scientific consensus that the global climate is changing in ways that are likely to have a profound impact on human society and the natural environment over the coming decades. The challenge for Facilities Mangers is to ensure that business continuity plans acknowledge the potential for such events and have contingencies in place to ensure that their organisation can recover from an extreme weather event in a timely fashion. This paper will review current literature/theories pertinent to extreme weather events and business continuity planning; will consider issues of risk; identify the key drivers that need to be considered by Facilities Managers in preparing contingency/disaster recover plans; and identify gaps in knowledge (understanding and toolkits) that need to be addressed. The paper will also briefly outline a 3 year research project underway in the UK to address the issues
Resumo:
Deliberating on Enterprise Resource Planning (ERP) software sourcing and provision, this paper contrasts the corporate environment with the small business environment. The paper is about Enterprise Resource Planning client (ERPc) expectations and Enterprise Resource Planning vendor (ERPv) value propositions as a mutually compatible process for achieving acceptable standards of ERP software performance. It is suggested that a less-than-equitable vendor–client relationship would not contribute to the implementation of the optimum solution. Adapting selected theoretical concepts and models, the researchers analyse ERPv to ERPc relationship. This analysis is designed to discover if the provision of the very large ERP vendors who market systems such as SAP, and the provision of the smaller ERP vendors (in this instance Eshbel Technologies Ltd who market an ERP software solution called Priority) when framed as a value proposition (Walters, D. (2002) Operations Strategy. Hampshire, UK: Palgrave), is at all comparable or distinctive.