3 resultados para regular replacement
em Greenwich Academic Literature Archive - UK
Resumo:
Given a relation α (a binary sociogram) and an a priori equivalence relation π, both on the same set of individuals, it is interesting to look for the largest equivalence πo that is contained in and is regular with respect to α. The equivalence relation πo is called the regular interior of π with respect to α. The computation of πo involves the left and right residuals, a concept that generalized group inverses to the algebra of relations. A polynomial-time procedure is presented (Theorem 11) and illustrated with examples. In particular, the regular interior gives meet in the lattice of regular equivalences: the regular meet of regular equivalences is the regular interior of their intersection. Finally, the concept of relative regular equivalence is defined and compared with regular equivalence.
Resumo:
Social network analysts have tried to capture the idea of social role explicitly by proposing a framework that precisely gives conditions under which group actors are playing equivalent roles. They term these methods positional analysis techniques. The most general definition is regular equivalence which captures the idea that equivalent actors are related in a similar way to equivalent alters. Regular equivalence gives rise to a whole class of partitions on a network. Given a network we have two different computational problems. The first is how to find a particular regular equivalence. An algorithm exists to find the largest regular partition but there are not efficient algorithms to test whether there is a regular k-partition. That is a partition in k groups that is regular. In addition, when dealing with real data, it is unlikely that any regular partitions exist. To overcome this problem relaxations of regular equivalence have been proposed along with optimisation techniques to find nearly regular partitions. In this paper we review the algorithms that have developed to find particular regular equivalences and look at some of the recent theoretical results which give an insight into the complexity of finding regular partitions.