5 resultados para reduce toxic Cr

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A toxicity model on dividing the computational domain into two parts, a control region (CR) and a transport region (TR), for species calculation was recently developed. The model can be incorporated with either the heat source approach or the eddy dissipation model (EDM). The work described in this paper is a further application of the toxicity model with modifications of the EDM for vitiated fires. In the modified EDM, chemical reaction only occurs within the CR. This is consistent with the approach used in the species concentration calculations within the toxicity model in which yields of combustion products only change within the CR. A vitiated large room-corridor fire, in which the carbon monoxide (CM) concentrations are very high and the temperatures are relatively low at locations distant from the original fire source, is simulated using the modified EDM coupled with the toxicity model. Compared with the EDM, the modified EDM provide significant improvements in the predictions of temperatures at remote locations. Predictions of species concentrations at various locations follow the measured trends. Good agreements between the measured and predicted species concentrations are obtained at the vitiated fire stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that volumetric contraction and solidification during the polymerization process of restorative composites in combination with bonding to the hard tissue result in stress transfer and inward deformation of the cavity walls of the restored tooth. Deformation of the walls decreases the size of the cavity during the filling process. This fact has a profound influence on the assumption-raised and discussed in this paper-that an incremental filling technique reduces the stress effect of composite shrinkage on the tooth. Developing stress fields for different incremental filling techniques are simulated in a numerical analysis. The analysis shows that, in a restoration with a well-established bond to the tooth-as is generally desired-incremental filling techniques increase the deformation of the restored tooth. The increase is caused by the incremental deformation of the preparation, which effectively decreases the total amount of composite needed to fill the cavity. This leads to a higher-stressed tooth-composite structure. The study also shows that the assessment of intercuspal distance measurements as well as simplifications based on generalization of the shrinkage stress state cannot be sufficient to characterize the effect of polymerization shrinkage in a tooth-restoration complex. Incremental filling methods may need to be retained for reasons such as densification, adaptation, thoroughness of cure, and bond formation. However, it is very difficult to prove that incrementalization needs to be retained because of the abatement of shrinkage effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While incidents requiring the rapid egress of passengers from trains are infrequent, perhaps the most challenging scenario for passengers involves the evacuation from an overturned carriage subjected to fire. In this paper we attempt to estimate the flow rate capacity of an overturned rail carriage end exit. This was achieved through two full-scale evacuation experiments, in one of which the participants were subjected to non-toxic smoke. The experiments were conducted as part of a pilot study into evacuation from rail carriages. In reviewing the experimental results, it should be noted that only a single run of each trial was undertaken with a limited — though varied — population. As a result it is not possible to test the statistical significance of the evacuation times quoted and so the results should be treated as indicative rather than definitive. The carriage used in the experiments was a standard class Mark IID which, while an old carriage design, shares many features with those carriages commonly found on the British rail network. In the evacuation involving smoke, the carriage end exit was found to achieve an average flow rate capacity of approximately 5.0 persons/min. The average flow rate capacity of the exit without smoke was found to be approximately 9.2 persons/min. It was noted that the presence of smoke tended to reduce significantly the exit flow rate. Due to the nature of the experimental conditions, these flow rates are considered optimistic. Finally, the authors make several recommendations for improving survivability in rail accidents. Copyright © 2000 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A practical CFD method is presented in this study to predict the generation of toxic gases in enclosure fires. The model makes use of local combustion conditions to determine the yield of carbon monoxide, carbon dioxide, hydrocarbon, soot and oxygen. The local conditions used in the determination of these species are the local equivalence ratio (LER) and the local temperature. The heat released from combustion is calculated using the volumetric heat source model or the eddy dissipation model (EDM). The model is then used to simulate a range of reduced-scale and full-scale fire experiments. The model predictions for most of the predicted species are then shown to be in good agreement with the test results