4 resultados para pseudo-orthogonal Latin squares

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element/volume/difference methods, particularly when the long-time transient behaviour of a system is of interest. Since the exact solution is obtained at the grid collocation points superior accuracy can be achieved on modest grid resolution. Furthermore, the grid can be freely adapted with time and in space, to particular flow conditions or geometric variations. This is especially advantageous where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free sutface. The electromagnetic field then determines the instantaneous liquid volume shape and the liquid shape affects in turn the electromagnetic field. In AC applications a thin "skin effect" region results on the free surface that dominates grid requirements. Infinitesimally thin boundary cells can be introduced using Chebyshev polynomial expansions without detriment to the numerical accuracy. This paper presents a general methodology of the pseudo-spectral approach and outlines the solution procedures used. Several instructive example applications are given: the aluminium electrolysis MHD problem, induction melting and stirring and the dynamics of magnetically levitated droplets in AC and DC fields. Comparisons to available analytical solutions and to experimental measurements will be discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element and volume methods, particularly when the long-time transient behaviour of a system is of interest. The exact solution is obtained at grid collocation points leading to superior accuracy on modest grids. Furthermore, the grid can be freely adapted in time and space to particular flow conditions or geometric variations, especially useful where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free surface. The electromagnetic field determines the instantaneous liquid volume shape, which then affects the electromagnetic field. A general methodology of the pseudo-spectral approach is presented, with several instructive example applications: the aluminium electrolysis MHD problem, induction melting in a cold crucible and the dynamics of AC/DC magnetically levitated droplets. Finally, comparisons with available analytical solutions and to experimental measurements are discussed.