11 resultados para predictions of emotional reactions
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper a continuum model for the prediction of segregation in granular material is presented. The numerical framework, a 3-D, unstructured grid, finite-volume code is described, and the micro-physical parametrizations, which are used to describe the processes and interactions at the microscopic level that lead to segregation, are analysed. Numerical simulations and comparisons with experimental data are then presented and conclusions are drawn on the capability of the model to accurately simulate the behaviour of granular matter during flow.
Resumo:
This paper presents an Eulerian-based numerical model of particle degradation in dilute-phase pneumatic conveying systems including bends of different angles. The model shows reasonable agreement with detailed measurements from a pilot-sized pneumatic conveying system and a much larger scale pneumatic conveyor. The potential of the model to predict degradation in a large-scale conveying system from an industrial plant is demonstrated. The importance of the effect of the bend angle on the damage imparted to the particles is discussed.
Resumo:
Purpose. (1) To investigate the effects of emotional arousal and weapon presence on the completeness and accuracy of police officers' memories; and (2) to better simulate the experience of witnessing a shooting and providing testimony. Methods. A firearms training simulator was used to present 70 experienced police officers with either a shooting or a domestic dispute scenario containing no weapons. Arousal was measured using both self-report and physiological indices. Recall for event details was tested after a 10-minute delay using a structured interview. Identification accuracy was assessed with a photographic line-up. Results. Self-report measures confirmed that the shooting induced greater arousal than did the other scenario. Overall, officers' memories for the event were less complete, but more accurate, when they had witnessed the shooting. The recall and line-up data did not support a weapon focus effect. Conclusions. Police officers' recall performance can be affected both qualitatively and quantitatively by witnessing an arousing event such as a shooting.
Resumo:
Research has established that individuals who tend to vary their personality depending on who they are with, show a variety of signs of psychological maladjustment in comparison to those who do not; they show more negative affect (Baird, Le and Lucas, 2006), lower life satisfaction (Suh, 2002), lower self-esteem (Sheldon et al., 1997), lower role-satisfaction (Donahue et al., 1993), higher rates of depression (Lutz and Ross, 2003), more anxiety (Diehl, Hastings and Stanton, 2001) and poorer physical health (Cross, Gore and Morris, 2003). It has also been shown that personality variability is positively related to the experience of inauthenticity and falsity (Sheldon et al., 1997). Donahue, Roberts, Robins and John (1993) found that personality inconsistency of this type is related to tension within the family. Psychoanalytic theory has also linked the operation of an adult false self to experiences with parents, particularly in early life (Winnicott, 1960). It was hypothesized that personality variability and the adult experience of falsity in social situations would be related to an emotionally unstable relationship with parents. The method to test this comprised a questionnaire-based survey given to a non-clinical population. The final sample comprised 305, with 193 women and 112 men, aged from 19 to 55. The first questionnaire asked participants to rate personality traits, including emotional stability, in three social contexts - with parents, with friends and with work colleagues. The second part involved 3 questions; participants were asked to select in which of the aforementioned three social contexts they felt “most themselves”; in which they were “most authentic” and in which they “put on a front”. It was found, consistent with predictions, that an index of overall personality variability calculated from the personality questionnaire correlated strongly with emotional instability around parents (r = 0.46, p<0.001), while not correlating with emotional instability in either of the other two contexts measured. This suggests a specific link between a person’s relationship with their parents and their overall personality integration. Furthermore, it was found that participants who cited one of the three social contexts (parents, friends, work colleagues) as being one in which they were “more themselves” or “more authentic” had significantly higher ratings of emotional instability with parents than those participants who found that they were equally authentic across settings (F = 9.8, p<0.005). The results suggest a clear link between a person’s relationships with their parents and their adult personality integration. An explanation is that individuals who experience an anxious or ambiguous attachment with their parents in childhood may fear rejection or abandonment in later life, and so habitually adapt their personality to fit in to social contexts as adults, in order to be accepted by others and to minimize the possibility of social rejection. These individuals meanwhile retain an emotionally unstable relationship with their parents in adulthood. This interpretation is speculative but is open to empirical testing. Clinicians should be aware that attachment problems with parents may underlie poor personality integration in adulthood.
On the modelling of the thermal interactions between a spray curtain and an impinging cold gas cloud
Resumo:
A mixed Lagrangian-Eulerian model of a Water Curtain barrier is presented. The heat, mass and momentum processes are modelled in a Lagrangian framework for the dispersed phase and in an Eulerian framework for the carrier phase. The derivation of the coupling source terms is illustrated with reference to a given carrier phase cell. The turbulent character of the flow is treated with a single equation model, modified to directly account for the influence of the particles on the flow. The model is implemented in the form of a 2 D incompressible Navier Stokes solver, coupled to an adaptive Rung Kutta method for the Lagrangian sub-system. Simulations of a free standing full cone water spray show satisfactory agreement with experiment. Predictions of a Water Curtain barrier impacted by a cold gas cloud point to markedly different flow fields for the upward and downward configurations, which could influence the effectiveness of chemical absorption in the liquid phase.
Resumo:
We present here a decoupling technique to tackle the entanglement of the nonlinear boundary condition and the movement of the char/virgin front for a thermal pyrolysis model for charring materials. Standard numerical techniques to solve moving front problems — often referred to as Stefan problems — encounter difficulties when dealing with nonlinear boundaries. While special integral methods have been developed to solve this problem, they suffer from several limitations which the technique described here overcomes. The newly developed technique is compared with the exact analytical solutions for some simple ideal situations which demonstrate that the numerical method is capable of producing accurate numerical solutions. The pyrolysis model is also used to simulate the mass loss process from a white pine sample exposed to a constant radiative flux in a nitrogen atmosphere. Comparison with experimental results demonstrates that the predictions of mass loss rates and temperature profile within the solid material are in good agreement with the experiment.
Resumo:
A pyrolysis model for noncharring solid fuels is presented in this paper. Model predictions are compared with experimental data for the mass loss rates of polymethylmethacrylate (PMMA) and very good agreement is achieved. Using a three-dimensional CFD environment, the pyrolysis model is then coupled with a gas-phase combustion model and a thermal radiation model to simulate fire development within a small compartment. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic post-flashover linear correlation with constant of proportionality 0.38 kg/sm5=2. The simulation results also suggest that the model is capable of predicting the onset of "flashover" and "post-flashover" type behaviour within the fire compartment.
Resumo:
In this paper we present some work concerned with the development and testing of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid fuels. The CFD model is coupled with a simple thermal pyrolysis model for combustible solid noncharring fuels, a six-flux radiation model and an eddy-dissipation model for gaseous combustion. The model is then used to simulate a series of small-scale room fire experiments in which the target solid fuel is polymethylmethacrylate. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic linear correlation with constant of proportionality 0.38 kg/sm5/12. The simulation results also suggest that the model is capable of predicting the onset of "flashover" type behavior within the fire compartment.
Resumo:
The present work uses the discrete element method (DEM) to describe assemblies of particulate bulk materials. Working numerical descriptions of entire processes using this scheme are infeasible because of the very large number of elements (1012 or more in a moderately sized industrial silo). However it is possible to capture much of the essential bulk mechanics through selective DEM on important regions of an assembly, thereafter using the information in continuum numerical descriptions of particulate processes. The continuum numerical model uses population balances of the various components in bulk solid mixtures. It depends on constitutive relationships for the internal transfer, creation and/or destruction of components within the mixture. In this paper we show the means of generating such relationships for two important flow phenomena – segregation whereby particles differing in some important property (often size) separate into discrete phases, and degradation, whereby particles break into sub-elements, through impact on each other or shearing. We perform DEM simulations under a range of representative conditions, extracting the important parameters for the relevant transfer, creation and/or destruction of particles in certain classes within the assembly over time. Continuum predictions of segregation and degradation using this scheme are currently being successfully validated against bulk experimental data and are beginning to be used in schemes to improve the design and operation of bulk solids process plant.
Resumo:
Cold crucible furnace is widely used for melting reactive metals for high quality castings. Although the water cooled copper crucible avoids contamination, it produces a low superheat of the melt. Experimental and theoretical investigations of the process showed that the increase of the supplied power to the furnace leads to a saturation in the temperature rise of the melt, and no significant increase of the melt superheat can be obtained. The computer model of theprocess has been developed to simulate the time dependent turbulent flow, heat transfer with phase change, and AC and DC magnetohydrodynamics in a time varying liquid metal envelope. The model predicts that the supermimposition of a strong DC field on top of the normal AC field reduces the level of turbulience and stirring in the liquid metal, thereby reducing the heat loss through the base of the crucible and increasing the superheat. The direct measurements of the temperature in the commercial size cold crucbile has confirmed the computer redictions and showed that the addition of a DC field increased the superheat in molten TiAl from ~45C (AC field only) to ~81C (DC+AC fields). The present paper reports further predictions of the effect of a dDC field on top of the AC field and compares these with experimental data.