2 resultados para plant interacting microbes
em Greenwich Academic Literature Archive - UK
Resumo:
A variety of interacting complex phenomena takes place during the casting of metallic components. Here molten metal is poured into a mould cavity where it flows, cools, solidifies and then deforms in its solid state. As the metal cools, thermal gradients will promote thermal convection which will redistribute the heat around the component (usually from feeders or risers) towards the solidification front and mushy zone. Also, as the evolving solid regions of the cast component deform they will form gap at the cast-mould interface. This gap may change the rate of solidification in certain parts the casting, hence affecting the manner in which the cast component solidifies. Interaction between a cast component and its surrounding mould will also govern stress magnitudes in both the cast and mould -these may lead to defects such as cracks. This paper presents a multiphysics modelling approach to this complex process. Emphasis will be placed on the interacting phenomena taking place during the process and the modelling strategy used. Comparisons with plant data are also be given.
Resumo:
The flora of the Yucatan peninsula (Mexico) includes approximately 3000 plant species. Sideroxylon foetidissimum Jacq. subsp. gaumeri (Sapotaceae) is an endemic plant to the Yucatan peninsula; its fruit is edible and local people use the plant for medicinal purposes, although no details on its preparation or application are available [1,2]. A preliminary cytotoxic evaluation of the ethanolic root extract of S. foetidissimum revealed a potent activity against murine macrophage like cell line RAW 264.7 (IC50=39.54±4.11µg/mL). The systematic bioassay-guided fractionation of the extract resulted in the identification of the active saponin-containing fraction (IC50=33.69±6.19µg/mL). Four new triterpenoid saponins and a 1:1 mixture of two saponins were isolated from the active saponin- containing fraction. The evaluation of their cytotoxic activity revealed no activity for the tested pure saponins; however, the 1:1 mixture of saponins showed a potent activity (IC50=11.91±1.49µg/mL). The isolation of the saponins was carried out using semi-preparative HPLC. The structural assignments of the pure saponins were based on 1D (1H and 13C and DEPT-135) and 2D (COSY, HMBC, HSQC and TOCSY) NMR and mass spectrometry analyses. In this presentation, the isolation, identification and cytotoxic activity of the isolated compounds is discussed in more detail.