4 resultados para patient-specific spine model

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Belief revision is a well-researched topic within Artificial Intelligence (AI). We argue that the new model of belief revision as discussed here is suitable for general modelling of judicial decision making, along with the extant approach as known from jury research. The new approach to belief revision is of general interest, whenever attitudes to information are to be simulated within a multi-agent environment with agents holding local beliefs yet by interacting with, and influencing, other agents who are deliberating collectively. The principle of 'priority to the incoming information', as known from AI models of belief revision, is problematic when applied to factfinding by a jury. The present approach incorporates a computable model for local belief revision, such that a principle of recoverability is adopted. By this principle, any previously held belief must belong to the current cognitive state if consistent with it. For the purposes of jury simulation such a model calls for refinement. Yet, we claim, it constitutes a valid basis for an open system where other AI functionalities (or outer stimuli) could attempt to handle other aspects of the deliberation which are more specific to legal narratives, to argumentation in court, and then to the debate among the jurors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A casting route is often the most cost-effective means of producing engineering components. However, certain materials, particularly those based on Ti, TiAl and Zr alloy systems, are very reactive in the molten condition and must be melted in special furnaces. Induction Skull Melting (ISM) is the most widely-used process for melting these alloys prior to casting components such as turbine blades, engine valves, turbocharger rotors and medical prostheses. A major research project is underway with the specific target of developing robust techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (UK) is developing a computer model of the ISM process in close collaboration with the University of Birmingham (UK) where extensive melting trials are being undertaken. This paper describes the experimental measurements to obtain data to feed into and to validate the model. These include measurements of the true RMS current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the column of semi-levitated molten metal. Data are presented for Al, Ni and TiAl.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 μm are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 μm, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.