4 resultados para pacs: neural computing technologies
em Greenwich Academic Literature Archive - UK
Resumo:
A higher order version of the Hopfield neural network is presented which will perform a simple vector quantisation or clustering function. This model requires no penalty terms to impose constraints in the Hopfield energy, in contrast to the usual one where the energy involves only terms quadratic in the state vector. The energy function is shown to have no local minima within the unit hypercube of the state vector so the network only converges to valid final states. Optimisation trials show that the network can consistently find optimal clusterings for small, trial problems and near optimal ones for a large data set consisting of the intensity values from the digitised, grey-level image.
Resumo:
The consecutive, partly overlapping emergence of expert systems and then neural computation methods among intelligent technologies, is reflected in the evolving scene of their application to nuclear engineering. This paper provides a bird's eye view of the state of the application in the domain, along with a review of a particular task, the one perhaps economically more important: refueling design in nuclear power reactors.
Resumo:
The aim of this work is to improve retrieval and navigation services on bibliographic data held in digital libraries. This paper presents the design and implementation of OntoBib¸ an ontology-based bibliographic database system that adopts ontology-driven search in its retrieval. The presented work exemplifies how a digital library of bibliographic data can be managed using Semantic Web technologies and how utilizing the domain specific knowledge improves both search efficiency and navigation of web information and document retrieval.
Resumo:
This paper presents innovative work in the development of policy-based autonomic computing. The core of the work is a powerful and flexible policy-expression language AGILE, which facilitates run-time adaptable policy configuration of autonomic systems. AGILE also serves as an integrating platform for other self-management technologies including signal processing, automated trend analysis and utility functions. Each of these technologies has specific advantages and applicability to different types of dynamic adaptation. The AGILE platform enables seamless interoperability of the different technologies to each perform various aspects of self-management within a single application. The various technologies are implemented as object components. Self-management behaviour is specified using the policy language semantics to bind the various components together as required. Since the policy semantics support run-time re-configuration, the self-management architecture is dynamically composable. Additional benefits include the standardisation of the application programmer interface, terminology and semantics, and only a single point of embedding is required.