6 resultados para original edition print
em Greenwich Academic Literature Archive - UK
Resumo:
The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance. 1. Jin, T., and Yamada T., "Experimental Study of Human Behavior in Smoke Filled Corridors," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 511-519. 2. Galea, E.R., and Galparsoro, J.M.P., "EXODUS: An Evacuation Model for Mass Transport Vehicles," UK CAA Paper 93006 ISBN 086039 543X, CAA London, 1993. 3. Galea, E.R., and Galparsoro, J.M.P., "A Computer Based Simulation Model for the Prediction of Evacuation from Mass Transport Vehicles," Fire Safety Journal, Vol. 22, 1994, pp. 341-366. 4. Galea, E.R., Owen, M., and Lawrence, P., "Computer Modeling of Human Be havior in Aircraft Fire Accidents," to appear in the Proceedings of Combus tion Toxicology Symposium, CAMI, Oklahoma City, OK, 1995. 5. Kisko, T.M. and Francis, R.L., "EVACNET+: A Computer Program to Determine Optimal Building Evacuation Plans," Fire Safety Journal, Vol. 9, 1985, pp. 211-220. 6. Levin, B., "EXITT, A Simulation Model of Occupant Decisions and Actions in Residential Fires," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 561-570. 7. Fahy, R.F., "EXIT89: An Evacuation Model for High-Rise Buildings," Pro ceedings of The Third International Sym posium on Fire Safety Science, 1991, pp. 815-823. 8. Thompson, P.A., and Marchant, E.W., "A Computer Model for the Evacuation of Large Building Populations," Fire Safety Journal, Vol. 24, 1995, pp. 131-148. 9. Still, K., "New Computer System Can Predict Human Behavior Response to Building Fires," FIRE 84, 1993, pp. 40-41. 10. Ketchell, N., Cole, S.S., Webber, D.M., et.al., "The Egress Code for Human Move ment and Behavior in Emergency Evacu ations," Engineering for Crowd Safety (Smith, R.A., and Dickie, J.F., Eds.), Elsevier, 1993, pp. 361-370. 11. Takahashi, K., Tanaka, T. and Kose, S., "An Evacuation Model for Use in Fire Safety Design of Buildings," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 551- 560. 12. G2 Reference Manual, Version 3.0, Gensym Corporation, Cambridge, MA. 13. XVT Reference Manual, Version 3.0 XVT Software Inc., Boulder, CO. 14. Galea, E.R., "On the Field Modeling Approach to the Simulation of Enclosure Fires, Journal of Fire Protection Engineering, Vol. 1, No. 1, 1989, pp. 11-22. 15. Purser, D.A., "Toxicity Assessment of Combustion Products," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, pp. 1-200 - 1-245, 1988. 16. Hankin, B.D., and Wright, R.A., "Pas senger Flows in Subways," Operational Research Quarterly, Vol. 9, 1958, pp. 81-88. 17. HMSO, The Building Regulations 1991 - Approved Document B, section B 1 (1992 edition), HMSO publications, London, pp. 9-40. 18. Polus A., Schofer, J.L., and Ushpiz, A., "Pedestrian Flow and Level of Service," Journal of Transportation Engineering, Vol. 109, 1983, pp. 46-47. 19. Muir, H., Marrison, C., and Evans, A., "Aircraft Evacuations: the Effect of Passenger Motivation and Cabin Con figuration Adjacent to the Exit," CAA Paper 89019, ISBN 0 86039 406 9, 1989. 20. Muir, H., Private communication to appear as a CAA report, 1996.
Resumo:
On the 19 June 2001, a Thames passenger/tour boat underwent several evacuation trials. This work was conducted in order to collect data for the validation of marine-based computer models. The trials involved 111 participants who were distributed throughout the vessel. The boat had two decks and two points of exit from the lower deck placed on either side of the craft, forward and aft. The boat had a twin set of staircases towards the rear of the craft, just forward of the rear exits. maritimeEXODUS was used to simulate the full-scale evacuation trials conducted. The simulation times generated were compared against the original results and categorised according to the exit point availability. The predictions closely approximate the original results, differing by an average of 6.6% across the comparisons, with numerous qualitative similarities between the predictions and experimental results. The maritimeEXODUS evacuation model was then used to examine the evacuation procedure currently employed on the vessel. This was found to have potential to produce long evacuation times. maritimeEXODUS was used to suggest modifications to the mustering procedures. These theoretical results suggest that it is possible to significantly reduce evacuation times.
Resumo:
We consider the multilevel paradigm and its potential to aid the solution of combinatorial optimisation problems. The multilevel paradigm is a simple one, which involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found (sometimes for the original problem, sometimes the coarsest) and then iteratively refined at each level. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (most notably in the form of multigrid techniques). However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial optimisation problems. In this paper we address the issue of multilevel refinement for such problems and, with the aid of examples and results in graph partitioning, graph colouring and the travelling salesman problem, make a case for its use as a metaheuristic. The results provide compelling evidence that, although the multilevel framework cannot be considered as a panacea for combinatorial problems, it can provide an extremely useful addition to the combinatorial optimisation toolkit. We also give a possible explanation for the underlying process and extract some generic guidelines for its future use on other combinatorial problems.
Resumo:
The SB distributional model of Johnson's 1949 paper was introduced by a transformation to normality, that is, z ~ N(0, 1), consisting of a linear scaling to the range (0, 1), a logit transformation, and an affine transformation, z = γ + δu. The model, in its original parameterization, has often been used in forest diameter distribution modelling. In this paper, we define the SB distribution in terms of the inverse transformation from normality, including an initial linear scaling transformation, u = γ′ + δ′z (δ′ = 1/δ and γ′ = �γ/δ). The SB model in terms of the new parameterization is derived, and maximum likelihood estimation schema are presented for both model parameterizations. The statistical properties of the two alternative parameterizations are compared empirically on 20 data sets of diameter distributions of Changbai larch (Larix olgensis Henry). The new parameterization is shown to be statistically better than Johnson's original parameterization for the data sets considered here.
Resumo:
In this paper, the authors present a crashworthiness assessment and suggestions for modification of a conventionally designed rail vehicle with a driving cab (cab car). The analytical approach, based on numerical analysis, consisted of two stages. Firstly, the crashworthiness of the cab car was assessed by simulating a collision between the cab car and a rigid wall. Then, after analysing structural weaknesses, the design of the cab car was modified and simulated again in the same scenario. It was found that downward bending is an intrinsic weakness in conventional rail vehicles and that jackknifing is a main form of failures in conventional rail vehicle components. The cab car, as modified by the authors, overcomes the original weaknesses and shows the desired progressive collapse behaviour in simulation. The conclusions have general relevance for other studies but more importantly, point to the need for a rethink of some aspects of rail vehicle design.
Resumo:
The book provides an overview to the context of property development so that academics, students and professionals can examine the stages of development in the process - from initial consideration, to site finding, general appraisal, valuation, funding, construction and marketing, with a focus on two key areas of the process: appraisal and finance. The Second Edition reflects the developing research interests of the authors by putting property development and appraisal in a wider economic environment and the appraisal process was treated in a more holistic manner. Secondly, more case studies were included and the chapters framed with clear objectives key terms and summaries. Thirdly, this edition examined in more detail the property development and appraisal process in relation to sustainability and other key issues such as climate change, the changing financial environment, planning design and global influences. Research on appraisal techniques is incorporated in chapters 3-5. Research on property finance based on the original Property Lending Surveys carried out by the author and incorporated in other texts (Property Finance, 1994, 2003) is included in chapters 6-8. Research on property companies and their capital structures in included in chapter 8. Analysis of the relationship between sustainability and design is included in chapter 9. This is a key text in the area of property development, sales of the First Edition and Second Edition have been in the thousands globally to academics, students and practitioners.