6 resultados para organoclay, montmorillonites, hexadecyltrimethylammonium bromide, cationic surfactant, thermal analysis
em Greenwich Academic Literature Archive - UK
Resumo:
This paper describes recent developments made to the stress analysis module within FLOTHERM, extending its capability to handle viscoplastic behavior. It also presents the validation of this approach and results obtained for an SMT resistor as an illustrative example. Lifetime predictions are made using the creep strain energy based models of Darveaux. Comment is made about the applicability of the damage model to the geometry of the joint under study.
Resumo:
This paper investigated the thermal design of the light emitting diode (LED)onto the board and its packaging. The LED was a 6-lead MultiLED with three chips designed for LCD backlighting and other lighting purposes. A 3D finite element model of this LED was built up and thermal analysis was carried out using the multi physics software package PHYSICA. The modeling results were presented as temperature distributions in each LED, and the predicted junction temperature was used for thermal resistance calculation. The results for the board structure indicated that (1) removing the foil attach decreased the thermal resistance, (2) Increasing the copper foil thickness reduced the thermal resistance. package design indicated that the SMT designed LED with integrated slug gave lower thermal resistance. Pb-free solder material gave lower thermal resistance and junction temperature when compared with conductive adhesive
Resumo:
The purpose of this investigation was to examine the preparation and characterisation of hexane-in-water emulsions stabilised by clay particles. These emulsions, called Pickering emulsions, are characterised by the adsorption of solid particles at the oil/water (o/w) interface. The development of an elastic film at the o/w interface following the adsorption of colloidal particles helps to promote emulsion stability. Three different solid materials were used: silica sand, kaolin, and bentonite. Particles were added to the liquid mixtures in the range of 0.5–10 g dm−3. Emulsions were prepared using o/w ratios of 0.1, 0.2, 0.3, and 0.4. The effect of sodium chloride, on the stability of the prepared emulsions, was assessed in the range of 0–0.5 mol dm−3. In addition the use of a cationic surfactant hexadecyl-trimethylammonium bromide (CTAB) as an aid to improving emulsion stability was assessed in the concentration range of 0–0.05% (w/v). Characterisation of emulsion stability was realised through measurements of rheological properties including non-Newtonian viscosity, the elastic modulus, G', the loss modulus, G", and complex modulus, G*. The stability of the emulsions was evaluated immediately after preparation and 4 weeks later. Using the stability criteria, that for highly stable emulsions: G' > G" and both G' and G" are independent of frequency (varpi) it was concluded that highly stable emulsions could be prepared using a bentonite concentration of 2% (or more); an o/w ratio greater than 0.2; a CTAB concentration of 0.01%; and a salt concentration of 0.05 M or less—though salt was required.
Resumo:
Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L-1) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The hydration of tricalcium silicate (C(3)S) in the presence of heavy metal is very important to cement-based solidification/stabilisation (s/s) of waste. In this work, tricalcium silicate pastes and aqueous suspensions doped with nitrate salts of Zn(2+), Pb(2+), Cu(2+) and Cr(3+) were examined at different ages by X-ray powder diffraction (XRD), thermal analysis (DTA/TG) and (29)Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). It was found that heavy metal doping accelerated C(3)S hydration, even though Zn(2+) doping exhibited a severe retardation effect at an early period of time of C(3)S hydration. Heavy metals retarded the precipitation of portlandite due to the reduction of pH resulted from the hydrolysis of heavy metal ions during C(3)S hydration. The contents of portlandite in the control, Cr(3+)-doped, Cu(2+)-doped, Pb(2+)-doped and Zn(2+)-doped C(3)S pastes aged 28 days were 16.7, 5.5, 5.5, 5.5, and <0.7%, respectively. Heavy metals co-precipitated with calcium as double hydroxides such as (Ca(2)Cr(OH)(7).3H(2)O, Ca(2)(OH)(4)4Cu(OH)(2).2H(2)O and CaZn(2)(OH)(6).2H(2)O). These compounds were identified as crystalline phases in heavy metal doping C(3)S suspensions and amorphous phases in heavy metal doping C(3)S pastes. (29)Si NMR data confirmed that heavy metals promoted the polymerisation of C-S-H gel in 1-year-old of C(3)S pastes. The average numbers of Si in C-S-H gel for the Zn(2+)-doped, Cu(2+)-doped, Cr(3+)-doped, control, and Pb(2+)-doped C(3)S pastes were 5.86, 5.11, 3.66, 3.62, and 3.52. And the corresponding Ca/Si ratios were 1.36, 1.41, 1.56, 1.57 and 1.56, respectively. This study also revealed that the presence of heavy metal facilitated the formation of calcium carbonate during C(3)S hydration process in the presence of carbon dioxide.
Resumo:
Micelle/water partition coefficients for three dialkyl phthalate esters - dimethyl phthalate ester (DMP), diethyl phthalate ester (DEP) and dipropyl phthalate ester (DPP) were obtained by micellar liquid chromatography (MLC). Experiments were conducted over a temperature range which led to calculation of a Gibbs free energy, enthalpy and entropy of transfer for the phthalate esters. In addition, small angle neutron scattering (SANS) experiments were conducted with no substantial change observed in micelle size before and after phthalate ester incorporation. Overall, a novel method for obtaining thermodynamic information, based on partitioning data, has been developed for dialkyl phthalate esters using micellar liquid chromatography.