4 resultados para order batching

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A higher order version of the Hopfield neural network is presented which will perform a simple vector quantisation or clustering function. This model requires no penalty terms to impose constraints in the Hopfield energy, in contrast to the usual one where the energy involves only terms quadratic in the state vector. The energy function is shown to have no local minima within the unit hypercube of the state vector so the network only converges to valid final states. Optimisation trials show that the network can consistently find optimal clusterings for small, trial problems and near optimal ones for a large data set consisting of the intensity values from the digitised, grey-level image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study a problem of scheduling and batching on two machines in a flow-shop and open-shop environment. Each machine processes operations in batches, and the processing time of a batch is the sum of the processing times of the operations in that batch. A setup time, which depends only on the machine, is required before a batch is processed on a machine, and all jobs in a batch remain at the machine until the entire batch is processed. The aim is to make batching and sequencing decisions, which specify a partition of the jobs into batches on each machine, and a processing order of the batches on each machine, respectively, so that the makespan is minimized. The flow-shop problem is shown to be strongly NP-hard. We demonstrate that there is an optimal solution with the same batches on the two machines; we refer to these as consistent batches. A heuristic is developed that selects the best schedule among several with one, two, or three consistent batches, and is shown to have a worst-case performance ratio of 4/3. For the open-shop, we show that the problem is NP-hard in the ordinary sense. By proving the existence of an optimal solution with one, two or three consistent batches, a close relationship is established with the problem of scheduling two or three identical parallel machines to minimize the makespan. This allows a pseudo-polynomial algorithm to be derived, and various heuristic methods to be suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-stage assembly scheduling problem is a model for production processes that involve the assembly of final or intermediate products from basic components. In our model, there are m machines at the first stage that work in parallel, and each produces a component of a job. When all components of a job are ready, an assembly machine at the second stage completes the job by assembling the components. We study problems with the objective of minimizing the makespan, under two different types of batching that occur in some manufacturing environments. For one type, the time to process a batch on a machine is equal to the maximum of the processing times of its operations. For the other type, the batch processing time is defined as the sum of the processing times of its operations, and a setup time is required on a machine before each batch. For both models, we assume a batch availability policy, i.e., the completion times of the operations in a batch are defined to be equal to the batch completion time. We provide a fairly comprehensive complexity classification of the problems under the first type of batching, and we present a heuristic and its worst-case analysis under the second type of batching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourth-order partial differential equation (PDE) proposed by You and Kaveh (You-Kaveh fourth-order PDE), which replaces the gradient operator in classical second-order nonlinear diffusion methods with a Laplacian operator, is able to avoid blocky effects often caused by second-order nonlinear PDEs. However, the equation brought forward by You and Kaveh tends to leave the processed images with isolated black and white speckles. Although You and Kaveh use median filters to filter these speckles, median filters can blur the processed images to some extent, which weakens the result of You-Kaveh fourth-order PDE. In this paper, the reason why You-Kaveh fourth-order PDE can leave the processed images with isolated black and white speckles is analyzed, and a new fourth-order PDE based on the changes of Laplacian (LC fourth-order PDE) is proposed and tested. The new fourth-order PDE preserves the advantage of You-Kaveh fourth-order PDE and avoids leaving isolated black and white speckles. Moreover, the new fourth-order PDE keeps the boundary from being blurred and preserves the nuance in the processed images, so, the processed images look very natural.