4 resultados para optoelectronic
em Greenwich Academic Literature Archive - UK
Resumo:
The work presented in this paper is part of the OPISA project. This is a collaborative research project between the University of Greenwich and Bookham Technology. This report describes some of the initial work undertaken towards the goal of investigating optoelectronic packaging where alignment issues between optical sources and fibers can arise as part of the fabrication process. The focus of this study is on charting the dynamics of laser spot weld formation. This paper introduces some of the initial simulation work that has been undertaken and presents a model describing a transient heat source applied from a laser pulse to weld a stainless steel sleeve and ferrule and the resulting weld formation
Resumo:
For sensitive optoelectronic components, traditional soldering techniques cannot be used because of their inherent sensitivity to thermal stresses. One such component is the Optoelectronic Butterfly Package which houses a laser diode chip aligned to a fibre-optic cable. Even sub-micron misalignment of the fibre optic and laser diode chip can significantly reduce the performance of the device. The high cost of each unit requires that the number of damaged components, via the laser soldering process, are kept to a minimum. Mathematical modelling is undertaken to better understand the laser soldering process and to optimize operational parameters such as solder paste volume, copper pad dimensions, laser solder times for each joint, laser intensity and absorption coefficient. Validation of the model against experimental data will be completed, and will lead to an optimization of the assembly process, through an iterative modelling cycle. This will ultimately reduce costs, improve the process development time and increase consistency in the laser soldering process.
Resumo:
Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.