22 resultados para nuclear accident
em Greenwich Academic Literature Archive - UK
Resumo:
FUELCON is an expert system in nuclear engineering. Its task is optimized refueling-design, which is crucial to keep down operation costs at a plant. FUELCON proposes sets of alternative configurations of fuel-allocation; the fuel is positioned in a grid representing the core of a reactor. The practitioner of in-core fuel management uses FUELCON to generate a reasonably good configuration for the situation at hand. The domain expert, on the other hand, resorts to the system to test heuristics and discover new ones, for the task described above. Expert use involves a manual phase of revising the ruleset, based on performance during previous iterations in the same session. This paper is concerned with a new phase: the design of a neural component to carry out the revision automatically. Such an automated revision considers previous performance of the system and uses it for adaptation and learning better rules. The neural component is based on a particular schema for a symbolic to recurrent-analogue bridge, called NIPPL, and on the reinforcement learning of neural networks for the adaptation.
Resumo:
FUELCON is an expert system for optimized refueling design in nuclear engineering. This task is crucial for keeping down operating costs at a plant without compromising safety. FUELCON proposes sets of alternative configurations of allocation of fuel assemblies that are each positioned in the planar grid of a horizontal section of a reactor core. Results are simulated, and an expert user can also use FUELCON to revise rulesets and improve on his or her heuristics. The successful completion of FUELCON led this research team into undertaking a panoply of sequel projects, of which we provide a meta-architectural comparative formal discussion. In this paper, we demonstrate a novel adaptive technique that learns the optimal allocation heuristic for the various cores. The algorithm is a hybrid of a fine-grained neural network and symbolic computation components. This hybrid architecture is sensitive enough to learn the particular characteristics of the ‘in-core fuel management problem’ at hand, and is powerful enough to use this information fully to automatically revise heuristics, thus improving upon those provided by a human expert.
Resumo:
The consecutive, partly overlapping emergence of expert systems and then neural computation methods among intelligent technologies, is reflected in the evolving scene of their application to nuclear engineering. This paper provides a bird's eye view of the state of the application in the domain, along with a review of a particular task, the one perhaps economically more important: refueling design in nuclear power reactors.
Resumo:
Over a time span of almost a decade, the FUELCON project in nuclear engineering has led to a fully functional expert system and spawned sequel projects. Its task is in-core fuel management, also called `refueling', i.e., good fuel-allocation for reloading the core of a given nuclear reactor, for a given operation cycle. The task is crucial for keeping down operation costs at nuclear power plants. Fuel comes in different types and is positioned in a grid representing the core of a reactor. The tool is useful for practitioners but also helps the expert in the domain to test his or her rules of thumb and to discover new ones.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria, cabin crew training and in post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. In this paper the capabilities and limitations of the airEXODUS evacuation model are described. Its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described. Finally, the data requiremnets of the airEXODUS evacuation model is discussed along with several projects currently underway at the the Univesity of Greenwich designed to obtain this data. Included in this discussion is a description of the AASK - Aircraft Accident Statistics and Knowledge - data base which contains detailed information from aircraft accident survivors.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However such models have a heavy dependency on real evacuation data in order to (a) identify the key processes and factors associated with evacuation, (b) quantify variables and parameters associated with the identified factors/processes and finally (c) validate the models. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise from three major data sources in order to address these issues. This paper describes the extraction and application of data from one of these sources - aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (aircraft accident statistics and knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK comprises four component sub-databases. These consist of the ACCIDENT (crash details), FLIGHT ATTENDANT (observations and actions of the flight attendants), FATALS (details concerning passenger fatalities) and PAX (observations and accounts from individual passengers) databases. AASK currently contains information from 25 survivable aviation accidents covering the period 4 April 1977 to 6 August 1995, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. In addition to aiding the development of aircraft evacuation models, AASK is also being used to challenge some of the myths which proliferate in the aviation safety industry such as, passenger exit selection during evacuation, nature and frequency of seat jumping, speed of passenger response and group dynamics. AASK can also be used to aid in the development of a more comprehensive approach to conducting post accident interviews, and will eventually be used to store the data directly.
Resumo:
Computer based mathematical models describing the aircraft evacuation process have a vital role to play in aviation safety. However, such models have a heavy dependency on real evacuation data. The Fire Safety Engineering Group of the University of Greenwich is undertaking a large data extraction exercise in order to address this issue. This paper describes the extraction and application of data from aviation accident reports. To aid in the storage and analysis of the raw data, a computer database known as AASK (Aircraft Accident Statistics and Knowledge) is under development. AASK is being developed to store human observational and anecdotal data contained in accident reports and interview transcripts. AASK currently contains information from 25 survivable aviation accidents covering the period 04/04/77 to 06/08/95, involving some 2415 passengers, 2210 survivors, 205 fatalities and accounts from 669 people. Copyright © 1999 John Wiley & Sons, Ltd.
Resumo:
Monte Carlo calculations of the nuclear magnetic relaxation rate in a disordered metal–hydrogen system having a distribution of jump rates are reported. The calculations deal specifically with the spin-locked rotating-frame relaxation time T1ρ. The results demonstrate that the temperature variation of the rate is only weakly dependent on the distribution and it is therefore unlikely that the jump rate distribution can be extracted from relaxation measurements in which temperature is the main variable. It is shown that the alternative of measuring the relaxation rate over a wide range of spin-locking field strengths at a constant temperature can lead to an evaluation of the distribution.
Resumo:
The rotating-frame nuclear magnetic relaxation rate of spins diffusing on a disordered lattice has been calculated by Monte Carlo methods. The disorder includes not only variation in the distances between neighbouring spin sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent spin correlation functions which translate into asymmetry in the characteristic peak in the temperature dependence of the dipolar relaxation rate. The results may be used to deduce the average hopping rate from the relaxation but the effect is not sufficiently marked to enable the distribution of the hopping rates to be evaluated. The distribution, which is a measure of the degree of disorder, is the more interesting feature and it has been possible to show from the calculation that measurements of the relaxation rate as a function of the strength of the radiofrequency spin-locking magnetic field can lead to an evaluation of its width. Some experimental data on an amorphous metal - hydrogen alloy are reported which demonstrate the feasibility of this novel approach to rotating-frame relaxation in disordered materials.
Resumo:
This paper describes the AASK database. The AASK database is unique as it is a record of human behaviour during survivable aviation accidents. The AASK database is compiled from interview data compiled by agencies such as the NTSB and the AAIB. The database can be found on the website http://fseg.gre.ac.uk
Resumo:
The Aircraft Accident Statistics and Knowledge (AASK) database is a repository of passenger accounts from survivable aviation accidents/incidents compiled from interview data collected by agencies such as the US NTSB. Its main purpose is to store observational and anecdotal data from the actual interviews of the occupants involved in aircraft accidents. The database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It also plays a significant role in the development of the airEXODUS aircraft evacuation model, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. This paper describes the latest version of the database (Version 4.0) and includes some analysis of passenger behavior during actual accidents/incidents.
Resumo:
This report concerns the development of the AASK V4.0 database (CAA Project 560/SRG/R+AD). AASK is the Aircraft Accident Statistics and Knowledge database, which is a repository of survivor accounts from aviation accidents. Its main purpose is to store observational and anecdotal data from interviews of the occupants involved in aircraft accidents. The AASK database has wide application to aviation safety analysis, being a source of factual data regarding the evacuation process. It is also key to the development of aircraft evacuation models such as airEXODUS, where insight into how people actually behave during evacuation from survivable aircraft crashes is required. With support from the UK CAA (Project 277/SRG/R&AD), AASK V3.0 was developed. This was an on-line prototype system available over the internet to selected users and included a significantly increased number of passenger accounts compared with earlier versions, the introduction of cabin crew accounts, the introduction of fatality information and improved functionality through the seat plan viewer utility. The most recently completed AASK project (Project 560/SRG/R+AD) involved four main components: a) analysis of the data collected in V3.0; b) continued collection and entry of data into AASK; c) maintenance and functional development of the AASK database; and d) user feedback survey. All four components have been pursued and completed in this two-year project. The current version developed in the last year of the project is referred to as AASK V4.0. This report provides summaries of the work done and the results obtained in relation to the project deliverables.
Resumo:
In this book, expert energy economists assess the energy policy of thirty-one countries and the role of nuclear power. For many years the shock of Chernobyl took nuclear power off the agenda in most countries. Intense public relations activities by the industry, increasing evidence of climate change and failures to effectively reduce greenhouse gas emissions, have brought nuclear power issues back to the forefront of policy discussion in the nuclear renaissance countries. But some countries are just not prepared to go in that direction and, indeed, are still divesting themselves of their nuclear legacy, the nuclear phase-out countries. And how are nuclear issues being approached in the industrializing countries? An in-depth country-by-country analysis is presented within this framework. Out of such an analysis emerge thematic discussions on, among others, strategy in energy policy; nuclear plant safety, the impacts of nuclear accidents; the adequacy of nuclear power expertise. [Source: publisher's product description].