8 resultados para minimum force jump

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo calculations of the nuclear magnetic relaxation rate in a disordered metal–hydrogen system having a distribution of jump rates are reported. The calculations deal specifically with the spin-locked rotating-frame relaxation time T1ρ. The results demonstrate that the temperature variation of the rate is only weakly dependent on the distribution and it is therefore unlikely that the jump rate distribution can be extracted from relaxation measurements in which temperature is the main variable. It is shown that the alternative of measuring the relaxation rate over a wide range of spin-locking field strengths at a constant temperature can lead to an evaluation of the distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a heuristic method for drawing graphs which uses a multilevel technique combined with a force-directed placement algorithm. The multilevel process groups vertices to form clusters, uses the clusters to define a new graph and is repeated until the graph size falls below some threshold. The coarsest graph is then given an initial layout and the layout is successively refined on all the graphs starting with the coarsest and ending with the original. In this way the multilevel algorithm both accelerates and gives a more global quality to the force- directed placement. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on a number of examples ranging from 500 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 30 seconds for a 10,000 vertex graph to around 10 minutes for the largest graph. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a heuristic method for drawing graphs which uses a multilevel framework combined with a force-directed placement algorithm. The multilevel technique matches and coalesces pairs of adjacent vertices to define a new graph and is repeated recursively to create a hierarchy of increasingly coarse graphs, G0, G1, …, GL. The coarsest graph, GL, is then given an initial layout and the layout is refined and extended to all the graphs starting with the coarsest and ending with the original. At each successive change of level, l, the initial layout for Gl is taken from its coarser and smaller child graph, Gl+1, and refined using force-directed placement. In this way the multilevel framework both accelerates and appears to give a more global quality to the drawing. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on examples ranging in size from 10 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 vertex graph to around 5-7 minutes for the largest graphs. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods for serial generation of droplets from a liquid jet are shortly reviewed. A method of liquid metal droplet generation based on AC high frequency magnetic field is considered in detail. Numerical model for direct simulation of the time dependent droplet generation process is presented. Computed examples demonstrate the liquid silicon droplet formation for the cases of 500-1500 μm diameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a constant uniform magnetic field on a growing equiaxed crystal are investigated using a 3-dimensional enthalpy based numerical model. Two cases are considered: The first case looks at unconstrained growth, where the current density is generated through the thermo-electric effect and the current circulates between the tips and roots of the dendrite, the second represents an imposed potential difference across the domain. A jump in the electrical conductivity between the liquid and solid causes the current density to be non uniform. In both cases the resulting Lorentz force drives fluid flow in the liquid phase, this in turn causes advection of the thermal and solute field altering the free energy close to the interface and changing the morphology of the dendrite. In the first case the flow field is complex comprising of many circulations, the morphological changes are modelled using a 2D model with a quasi 3D approximation. The second case is comparable to classic problems involving a constant velocity boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical silicon solar cells are expected to serve as a technology to reduce silicon usage of photovoltaic (PV) power systems[1, 2, 3]. In order to establish the spherical silicon solar cell, a manufacturing method of uniformly sized silicon particles of 1mm in diameter is required. However, it is difficult to mass-produce the mono-sized silicon particles at low cost by existent processes now. We proposed a new method to generate liquid metal droplets uniformly by applying electromagnetic pinch force to a liquid metal jet[4]. The electromagnetic force was intermittently applied to the liquid metal jet issued from a nozzle in order to fluctuate the surface of the jet. As the fluctuation grew, the liquid jet was broken up into small droplets according to a frequency of the intermittent electromagnetic force. Firstly, a preliminary experiment was carried out. A single pulse current was applied instantaneously to a single turn coil around a molten gallium jet. It was confirmed that the jet could be split up by pinch force generated by the current. And then, electromagnetic pinch force was applied intermittently to the jet. It was found that the jet was broken up into mono-sized droplets in the case of a force frequency was equal to a critical frequency[5], which corresponds to a natural disturbance wave length of the jet. Numerical simulations of the droplet generation from the liquid jet were then carried out, which consisted of an electromagnetic analysis and a fluid flow calculation with a free surface of the jet. The simulation results were compared with the experiments and the agreement between the two was quite good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of crank configuration on muscle activity and torque production during submaximal arm crank ergometry. Thirteen non-specifically trained male participants volunteered. During the research trials they completed a warm-up at 15 W before two 3-min exercise stages were completed at 50 and 100 W; subjects used either a synchronous or asynchronous pattern of cranking. During the final 30-s of each submaximal exercise stage electromyographic and torque production data were collected. After the data had been processed each parameter was analysed using separate 2-way ANOVA tests with repeated measures. The activity of all muscles increased in line with external workload, although a shift in the temporal pattern of muscle activity was noted between crank configurations. Patterns of torque production during asynchronous and synchronous cranking were distinct. Furthermore, peak, minimum and delta (peak-minimum) torque values were different (P < 0.05) between crank configurations at both workloads. For example, at 100 W, peak torque using synchronous [19.6 (4.3) Nm] cranking was higher (P < 0.05) compared to asynchronous [16.8 (1.6) Nm] cranking. In contrast minimum torque was lower (P < 0.05) at 100 W using synchronous [4.8 (1.7) Nm] compared to asynchronous [7.3 (1.2) Nm] cranking. There was a distinct bilateral asymmetry in torque production during asynchronous cranking with the dominant transmitting significantly more force to the crank arm. Taken together, these preliminary data demonstrate the complex nature of muscle activity during arm crank ergometry performed with an asynchronous or synchronous crank set-up. Further work is required to determine how muscle activity (EMG activity) and associated patterns of torque production influence physiological responses and functional capacity during arm crank ergometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new technique for mode shape expansion in structural dynamic applications is presented based on the perturbed force vector approach. The proposed technique can directly adopt the measured incomplete modal data and include the effect of the perturbation between the analytical and test models. The results show that the proposed technique can provide very accurate expanded mode shapes, especially in cases when significant modelling error exists in the analytical model and limited measurements are available.