9 resultados para mesh-free method
em Greenwich Academic Literature Archive - UK
Resumo:
In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.
Resumo:
Abstract not available
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. In this paper we present an enhancement of the technique which uses imbalance to achieve higher quality partitions. We also present a formulation of the Kernighan-Lin partition optimisation algorithm which incorporates load-balancing. The resulting algorithm is tested against a different but related state-of the-art partitioner and shown to provide improved results.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight, however it has been shown that for certain classes of solution algorithm, the convergence of the solver is strongly influenced by the subdomain aspect ratio. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
This paper deals with the measure of Aspect Ratio for mesh partitioning and gives hints why, for certain solvers, the Aspect Ratio of partitions plays an important role. We define and rate different kinds of Aspect Ratio, present a new center-based partitioning method which optimizes this measure implicitly and rate several existing partitioning methods and tools under the criterion of Aspect Ratio.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.