13 resultados para mean-field model

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present some early work concerned with the development of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid cellulosic fuels. A simple solid fuel combustion model consisting of a thermal pyrolysis model, a six flux radiation model and an eddy-dissipation model for gaseous combustion have been developed and implemented within the CFD code CFDS-FLOW3D. The model is briefly described and demonstrated through two applications involving fire spread in a compartment with a plywood lined ceiling. The two scenarios considered involve a fire in an open and closed compartment. The model is shown to be able to qualitatively predict behaviors similar to "flashover"—in the case of the open room—and "backdraft"— in the case of the initially closed room.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical predictions produced by the SMARTFIRE fire field model are compared with experimental data. The predictions consist of gas temperatures at several locations within the compartment over a 60 min period. The test fire, produced by a burning wood crib attained a maximum heat release rate of approximately 11MW. The fire is intended to represent a nonspreading fire (i.e. single fuel source) in a moderately sized ventilated room. The experimental data formed part of the CIB Round Robin test series. Two simulations are produced, one involving a relatively coarse mesh and the other with a finer mesh. While the SMARTFIRE simulations made use of a simple volumetric heat release rate model, both simulations were found capable of reproducing the overall qualitative results. Both simulations tended to overpredict the measured temperatures. However, the finer mesh simulation was better able to reproduce the qualitative features of the experimental data. The maximum recorded experimental temperature (12141C after 39 min) was over-predicted in the fine mesh simulation by 12%. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parallel processing techniques have been used in the past to provide high performance computing resources for activities such as fire-field modelling. This has traditionally been achieved using specialized hardware and software, the expense of which would be difficult to justify for many fire engineering practices. In this article we demonstrate how typical office-based PCs attached to a Local Area Network has the potential to offer the benefits of parallel processing with minimal costs associated with the purchase of additional hardware or software. It was found that good speedups could be achieved on homogeneous networks of PCs, for example a problem composed of ~100,000 cells would run 9.3 times faster on a network of 12 800MHz PCs than on a single 800MHz PC. It was also found that a network of eight 3.2GHz Pentium 4 PCs would run 7.04 times faster than a single 3.2GHz Pentium computer. A dynamic load balancing scheme was also devised to allow the effective use of the software on heterogeneous PC networks. This scheme also ensured that the impact between the parallel processing task and other computer users on the network was minimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount of atmospheric hydrogen chloride (HCl) within fire enclosures produced from the combustion of chloride-based materials tends to decay as the fire effluent is transported through the enclosure due to mixing with fresh air and absorption by solids. This paper describes an HCl decay model, typically used in zone models, which has been modified and applied to a computational fluid dynamics (CFD)-based fire field model. While the modified model still makes use of some empirical formulations to represent the deposition mechanisms, these have been reduced from the original three to two through the use of the CFD framework. Furthermore, the effect of HCl flow to the wall surfaces on the time to reach equilibrium between HCl in the boundary layer and on wall surfaces is addressed by the modified model. Simulation results using the modified HCl decay model are compared with data from three experiments. The model is found to be able to reproduce the experimental trends and the predicted HCl levels are in good agreement with measured values

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a comparison of fire field model predictions with experiment for the case of a fire within a compartment which is vented (buoyancydriven) to the outside by a single horizontal ceiling vent. Unlike previous work, the mathematical model does not employ a mixing ratio to represent vent temperatures but allows the model to predict vent temperatures a priori. The experiment suggests that the flow through the vent produces oscillatory behaviour in vent temperatures with puffs of smoke emerging from the fire compartment. This type of flow is also predicted by the fire field model. While the numerical predictions are in good qualitative agreement with observations, they overpredict the amplitudes of the temperature oscillations within the vent and also the compartment temperatures. The discrepancies are thought to be due to three-dimensional effects not accounted for in this model as well as using standard ‘practices’ normally used by the community with regards to discretization and turbulence models. Furthermore, it is important to note that the use of the k–ε turbulence model in a transient mode, as is used here, may have a significant effect on the results. The numerical results also suggest that a linear relationship exists between the frequency of vent temperature oscillation (n) and the heat release rate (Q0) of the type n∝Q0.290, similar to that observed for compartments with two horizontal vents. This relationship is predicted to occur only for heat release rates below a critical value. Furthermore, the vent discharge coefficient is found to vary in an oscillatory fashion with a mean value of 0.58. Below the critical heat release rate the mean discharge coefficient is found to be insensitive to fire size.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SMARTFIRE is a fire field model based on an open architecture integrated CFD code and knowledge-based system. It makes use of the expert system to assist the user in setting up the problem specification and new computational techniques such as Group Solvers to reduce the computational effort involved in solving the equations. This paper concentrates on recent research into the use of artificial intelligence techniques to assist in dynamic solution control of fire scenarios being simulated using fire field modelling techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxations using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate enhanced solution reliability due to obtaining acceptable convergence within each time step unlike some of the comparison simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Full-scale furnished cabin fires have been studied experimentally for the purpose of characterising the post-crash cabin fire environment by the US Federal Aviation Administration for many years. In this paper the Computational Fluid Dynamics fire field model SMARTFIRE is used to simulate one of these fires conducted in the C-133 test facility in order to provide further validation of the computational approach and the SMARTFIRE software. The experiment involves exposing the interior cabin materials to an external fuel fire, opening only one exit at the far end of the cabin (the same side as the rupture) for ventilation, and noting the subsequent spread of the external fire to the cabin interior and the onset of flashover at approximately 210 seconds. Through this analysis, the software is shown to be in good agreement with the experimental data, producing reasonable agreement with the fire dynamics prior to flashover and producing a reasonable prediction of the flashover time i.e. 225 seconds. The paper then proceeds to utilize the model to examine the impact on flashover time of the extent of cabin furnishings and cabin ventilation provided by available exits

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Once the preserve of university academics and research laboratories with high-powered and expensive computers, the power of sophisticated mathematical fire models has now arrived on the desk top of the fire safety engineer. It is a revolution made possible by parallel advances in PC technology and fire modelling software. But while the tools have proliferated, there has not been a corresponding transfer of knowledge and understanding of the discipline from expert to general user. It is a serious shortfall of which the lack of suitable engineering courses dealing with the subject is symptomatic, if not the cause. The computational vehicles to run the models and an understanding of fire dynamics are not enough to exploit these sophisticated tools. Too often, they become 'black boxes' producing magic answers in exciting three-dimensional colour graphics and client-satisfying 'virtual reality' imagery. As well as a fundamental understanding of the physics and chemistry of fire, the fire safety engineer must have at least a rudimentary understanding of the theoretical basis supporting fire models to appreciate their limitations and capabilities. The five day short course, "Principles and Practice of Fire Modelling" run by the University of Greenwich attempt to bridge the divide between the expert and the general user, providing them with the expertise they need to understand the results of mathematical fire modelling. The course and associated text book, "Mathematical Modelling of Fire Phenomena" are aimed at students and professionals with a wide and varied background, they offer a friendly guide through the unfamiliar terrain of mathematical modelling. These concepts and techniques are introduced and demonstrated in seminars. Those attending also gain experience in using the methods during "hands-on" tutorial and workshop sessions. On completion of this short course, those participating should: - be familiar with the concept of zone and field modelling; - be familiar with zone and field model assumptions; - have an understanding of the capabilities and limitations of modelling software packages for zone and field modelling; - be able to select and use the most appropriate mathematical software and demonstrate their use in compartment fire applications; and - be able to interpret model predictions. The result is that the fire safety engineer is empowered to realise the full value of mathematical models to help in the prediction of fire development, and to determine the consequences of fire under a variety of conditions. This in turn enables him or her to design and implement safety measures which can potentially control, or at the very least reduce the impact of fire.