3 resultados para liquid crystal phase shifters

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigated the thermal design of the light emitting diode (LED)onto the board and its packaging. The LED was a 6-lead MultiLED with three chips designed for LCD backlighting and other lighting purposes. A 3D finite element model of this LED was built up and thermal analysis was carried out using the multi physics software package PHYSICA. The modeling results were presented as temperature distributions in each LED, and the predicted junction temperature was used for thermal resistance calculation. The results for the board structure indicated that (1) removing the foil attach decreased the thermal resistance, (2) Increasing the copper foil thickness reduced the thermal resistance. package design indicated that the SMT designed LED with integrated slug gave lower thermal resistance. Pb-free solder material gave lower thermal resistance and junction temperature when compared with conductive adhesive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The manufacture of materials products involves the control of a range of interacting physical phenomena. The material to be used is synthesised and then manipulated into some component form. The structure and properties of the final component are influenced by both interactions of continuum-scale phenomena and those at an atomistic-scale level. Moreover, during the processing phase there are some properties that cannot be measured (typically the liquid-solid phase change). However, it seems there is a potential to derive properties and other features from atomistic-scale simulations that are of key importance at the continuum scale. Some of the issues that need to be resolved in this context focus upon computational techniques and software tools facilitating: (i) the multiphysics modeling at continuum scale; (ii) the interaction and appropriate degrees of coupling between the atomistic through microstructure to continuum scale; and (iii) the exploitation of high-performance parallel computing power delivering simulation results in a practical time period. This paper discusses some of the attempts to address each of the above issues, particularly in the context of materials processing for manufacture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active matrix liquid crystal displays (AMLCD) need to be protected in severe environments. This is achieved through a ruggedisation process, where the display is laminated with cover glasses to become a more robust structure. The ruggedisation process can in itself cause stresses in the display and this can lead to delamination failures during the lamination process, during qualification testing or in-service. Controlling the magnitude of stress in a display during the lamination process is of course very important and this depends highly on the materials used. This paper discusses the use of finite element analysis to investigate the use of different materials in the lamination process and how such materials can affect the stress magnitude in the display.