2 resultados para laboratory automation
em Greenwich Academic Literature Archive - UK
Resumo:
FUELCON is an expert system in nuclear engineering. Its task is optimized refueling-design, which is crucial to keep down operation costs at a plant. FUELCON proposes sets of alternative configurations of fuel-allocation; the fuel is positioned in a grid representing the core of a reactor. The practitioner of in-core fuel management uses FUELCON to generate a reasonably good configuration for the situation at hand. The domain expert, on the other hand, resorts to the system to test heuristics and discover new ones, for the task described above. Expert use involves a manual phase of revising the ruleset, based on performance during previous iterations in the same session. This paper is concerned with a new phase: the design of a neural component to carry out the revision automatically. Such an automated revision considers previous performance of the system and uses it for adaptation and learning better rules. The neural component is based on a particular schema for a symbolic to recurrent-analogue bridge, called NIPPL, and on the reinforcement learning of neural networks for the adaptation.
Resumo:
The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.