2 resultados para kappa statistic
em Greenwich Academic Literature Archive - UK
Resumo:
Lennart Åqvist (1992) proposed a logical theory of legal evidence, based on the Bolding-Ekelöf of degrees of evidential strength. This paper reformulates Åqvist's model in terms of the probabilistic version of the kappa calculus. Proving its acceptability in the legal context is beyond the present scope, but the epistemological debate about Bayesian Law isclearly relevant. While the present model is a possible link to that lineof inquiry, we offer some considerations about the broader picture of thepotential of AI & Law in the evidentiary context. Whereas probabilisticreasoning is well-researched in AI, calculations about the threshold ofpersuasion in litigation, whatever their value, are just the tip of theiceberg. The bulk of the modeling desiderata is arguably elsewhere, if one isto ideally make the most of AI's distinctive contribution as envisaged forlegal evidence research.
Resumo:
In attempts to conserve the species diversity of trees in tropical forests, monitoring of diversity in inventories is essential. For effective monitoring it is crucial to be able to make meaningful comparisons between different regions, or comparisons of the diversity of a region at different times. Many species diversity measures have been defined, including the well-known abundance and entropy measures. All such measures share a number of problems in their effective practical use. However, probably the most problematic is that they cannot be used to meaningfully assess changes, since thay are only concerned with the number of species or the proportions of the population/sample which they constitute. A natural (though simplistic) model of a species frequency distribution is the multinomial distribution. It is shown that the likelihood analysis of samples from such a distribution are closely related to a number of entropy-type measures of diversity. Hence a comparison of the species distribution on two plots, using the multinomial model and likelihood methods, leads to generalised cross-entropy as the LRT test statistic of the null that the species distributions are the same. Data from 30 contiguous plots in a forest in Sumatra are analysed using these methods. Significance tests between all pairs of plots yield extremely low p-values, indicating strongly that it ought to been "Obvious" that the observed species distributions are different on different plots. In terms of how different the plots are, and how these differences vary over the whole study site, a display of the degrees of freedom of the test, (equivalent to the number of shared species) seems to be the most revealing indicator, as well as the simplest.