12 resultados para joint ventures internacionales
em Greenwich Academic Literature Archive - UK
Resumo:
Solder materials are used to provide a connection between electronic components and printed circuit boards (PCBs) using either the reflow or wave soldering process. As a board assembly passes through a reflow furnace the solder (initially in the form of solder paste) melts, reflows, then solidifies, and finally deforms between the chip and board. A number of defects may occur during this process such as flux entrapment, void formation, and cracking of the joint, chip or board. These defects are a serious concern to industry, especially with trends towards increasing component miniaturisation and smaller pitch sizes. This paper presents a modelling methodology for predicting solder joint shape, solidification, and deformation (stress) during the assembly process.
Resumo:
A computational model of solder joint formation and the subsequent cooling behaviour is described. Given the rapid changes in the technology of printed circuit boards, there is a requirement for comprehensive models of solder joint formation which permit detailed analysis of design and optimization options. Solder joint formation is complex, involving a range of interacting phenomena. This paper describes a model implementation (as part of a more comprehensive framework) to describe the shape formation (conditioned by surface tension), heat transfer, phase change and the development of elastoviscoplastic stress. The computational modelling framework is based upon mixed finite element and finite volume procedures, and has unstructured meshes enabling arbitrarily complex geometries to be analysed. Initial results for both through-hole and surface-mount geometries are presented.
Resumo:
The attachment of electronic components to printed circuit boards using solder material is a complex process. This paper presents a novel modeling methodology, which integrates the governing physics taking place. Multiphysics modeling technology, imbedded into the simulation tool—PHYSICA is used to simulate fluid flow, heat transfer, solidification, and stress evolution in an integrated manner. Results using this code are presented, detailing the mechanical response of two solder materials as they cool, solidify and then deform. The shape that a solder joint takes upon melting is predicted using the SURFACE EVOLVER code. Details are given on how these predictions can be used in the PHYSICA code to provide a modeling route by which the shape, solidification history, and resulting stress profiles can be predicted.
Resumo:
This paper details and demonstrates integrated optimisation-reliability modelling for predicting the performance of solder joints in electronic packaging. This integrated modelling approach is used to identify efficiently and quickly the most suitable design parameters for solder joint performance during thermal cycling and is demonstrated on flip-chip components using “no-flow” underfills. To implement “optimisation in reliability” approach, the finite element simulation tool – PHYSICA, is coupled with optimisation and statistical tools. This resulting framework is capable of performing design optimisation procedures in an entirely automated and systematic manner.
Resumo:
The relationship between the damage caused at different thermal cycles is very important. The whole of accelerated thermal cycle testing is based on the premise that damage at one cycle is representative of damage at a different cycle. In this paper, the relative damage caused by six thermal cycle profiles are predicted using Finite Element (FE) modelling and the results validated against experiments. Both creep strain and strain energy density were used as damage indicators and creep strain was found to correlate better with experiment. The validated FE model is then used to investigate the effect of altering each of the thermal profile parameters (ramp and swell times, hot and cold temperatures). The components used for testing are surface mount resistors - 1206, 0805 and 0603. The solders investigated are eutectic SnAgCu and eutectic SnAg.
Resumo:
Flip chip interconnections using anisotropic conductive film (ACF) are now a very attractive technique for electronic packaging assembly. Although ACF is environmentally friendly, many factors may influence the reliability of the final ACF joint. External mechanical loading is one of these factors. Finite element analysis (FEA) was carried out to understand the effect of mechanical loading on the ACF joint. A 3-dimensional model of adhesively bonded flip chip assembly was built and simulations were performed for the 3-point bending test. The results show that the stress at its highest value at the corners, where the chip and ACF were connected together. The ACF thickness was increased at these corner regions. It was found that higher mechanical loading results in higher stress that causes a greater gap between the chip and the substrate at the corner position. Experimental work was also carried out to study the electrical reliability of the ACF joint with the applied bending load. As per the prediction from FEA, it was found that at first the corner joint failed. Successive open joints from the corner towards the middle were also noticed with the increase of the applied load.
Resumo:
Solder joints are often the cause of failure in electronic devices, failing due to cyclic creep induced ductile fatigue. This paper will review the modelling methods available to predict the lifetime of SnPb and SnAgCu solder joints under thermo-mechanical cycling conditions such as power cycling, accelerated thermal cycling and isothermal testing, the methods do not apply to other damage mechanisms such as vibration or drop-testing. Analytical methods such as recommended by the IPC are covered, which are simple to use but limited in capability. Finite element modelling methods are reviewed, along with the necessary constitutive laws and fatigue laws for solder, these offer the most accurate predictions at the current time. Research on state-of-the-art damage mechanics methods is also presented, although these have not undergone enough experimental validation to be recommended at present
Resumo:
The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82×108 A/m2 current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu)3Sn4 layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67×1013 Pa/m, resulting in a stress migration force of 1.82×10-16 N, which is comparable to the electromigration force, 2.82×10-16 N. Dissolution of the Ni+(Ni,Cu)3Sn4 layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed
Resumo:
The trend towards miniaturization of electronic products leads to the need for very small sized solder joints. Therefore, there is a higher reliability risk that too large a fraction of solder joints will transform into Intermetallic Compounds (IMCs) at the solder interface. In this paper, fracture mechanics study of the IMC layer for SnPb and Pb-free solder joints was carried out using finite element numerical computer modelling method. It is assumed that only one crack is present in the IMC layer. Linear Elastic Fracture Mechanics (LEFM) approach is used for parametric study of the Stress Intensity Factors (SIF, KI and KII), at the predefined crack in the IMC layer of solder butt joint tensile sample. Contrary to intuition, it is revealed that a thicker IMC layer in fact increases the reliability of solder joint for a cracked IMC. Value of KI and KII are found to decrease with the location of the crack further away from the solder interfaces while other parameters are constant. Solder thickness and strain rate were also found to have a significant influence on the SIF values. It has been found that soft solder matrix generates non-uniform plastic deformation across the solder-IMC interface near the crack tip that is responsible to obtain higher KI and KII.
Resumo:
Explores the issue of the share of beneficial entitlement to the family home where the legal title is jointly owned, but where there has not been an express declaration of a beneficial joint tenancy. Discusses the House of Lords judgment in Stack v Dowden which addressed this point. Explains how the judges moved the focus away from the court imposing its own sense of fairness on the parties or imputing an intention based on the circumstances to one where the concentration will be on the parties' relevant conduct. Outlines three other points of interest referred to in the judgment: (1) whether an indirect financial contribution could support a constructive trust; (2) whether proprietary estoppel and common intention constructive trusts should be assimilated; and (3) whether a mortgage liability is equivalent to a financial contribution.
Resumo:
Reviews case law illustrating the courts' approach to beneficial ownership of property purchased in joint name by means of a joint mortgage but without any declaration of beneficial interest, the resulting trust and joint beneficial interest presumptions. Contrast the approach adopted in cases where one party made no contribution to the mortgage payments with those where both parties made a contribution. Highlights the courts' treatment of the right to buy discount afforded tenant purchasers and property purchased as a commercial venture rather than a home.
Resumo:
The presentation explores and evaluates an innovation in education and training in which two different professional trainings (nursing and social work) are integrated to produce jointly qualified specialist practitioners.