4 resultados para inverse problem

em Greenwich Academic Literature Archive - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature distributions involved in some metal-cutting or surface-milling processes may be obtained by solving a non-linear inverse problem. A two-level concept on parallelism is introduced to compute such temperature distribution. The primary level is based on a problem-partitioning concept driven by the nature and properties of the non-linear inverse problem. Such partitioning results to a coarse-grained parallel algorithm. A simplified 2-D metal-cutting process is used as an example to illustrate the concept. A secondary level exploitation of further parallel properties based on the concept of domain-data parallelism is explained and implemented using MPI. Some experiments were performed on a network of loosely coupled machines consist of SUN Sparc Classic workstations and a network of tightly coupled processors, namely the Origin 2000.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper extends the standard network centrality measures of degree, closeness and betweenness to apply to groups and classes as well as individuals. The group centrality measures will enable researchers to answer such questions as ‘how central is the engineering department in the informal influence network of this company?’ or ‘among middle managers in a given organization, which are more central, the men or the women?’ With these measures we can also solve the inverse problem: given the network of ties among organization members, how can we form a team that is maximally central? The measures are illustrated using two classic network data sets. We also formalize a measure of group centrality efficiency, which indicates the extent to which a group's centrality is principally due to a small subset of its members.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper, a 2-D non-linear electric arc-welding problem is considered. It is assumed that the moving arc generates an unknown quantity of energy which makes the problem an inverse problem with an unknown source. Robust algorithms to solve such problems e#ciently, and in certain circumstances in real-time, are of great technological and industrial interest. There are other types of inverse problems which involve inverse determination of heat conductivity or material properties [CDJ63][TE98], inverse problems in material cutting [ILPP98], and retrieval of parameters containing discontinuities [IK90]. As in the metal cutting problem, the temperature of a very hot surface is required and it relies on the use of thermocouples. Here, the solution scheme requires temperature measurements lied in the neighbourhood of the weld line in order to retrieve the unknown heat source. The size of this neighbourhood is not considered in this paper, but rather a domain decomposition concept is presented and an examination of the accuracy of the retrieved source are presented. This paper is organised as follows. The inverse problem is formulated and a method for the source retrieval is presented in the second section. The source retrieval method is based on an extension of the 1-D source retrieval method as proposed in [ILP].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.