3 resultados para inimigo natural

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Review of: Noel Starkey (ed), Connectionist Natural Language Processing: Readings from 'Connection Science'

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergent behaviour of autonomic systems, together with the scale of their deployment, impedes prediction of the full range of configuration and failure scenarios; thus it is not possible to devise management and recovery strategies to cover all possible outcomes. One solution to this problem is to embed self-managing and self-healing abilities into such applications. Traditional design approaches favour determinism, even when unnecessary. This can lead to conflicts between the non-functional requirements. Natural systems such as ant colonies have evolved cooperative, finely tuned emergent behaviours which allow the colonies to function at very large scale and to be very robust, although non-deterministic. Simple pheromone-exchange communication systems are highly efficient and are a major contribution to their success. This paper proposes that we look to natural systems for inspiration when designing architecture and communications strategies, and presents an election algorithm which encapsulates non-deterministic behaviour to achieve high scalability, robustness and stability.