4 resultados para influences on STEM enrolment

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: A number of factors are known to influence food preferences and acceptability of new products. These include their sensory characteristics and strong, innate neural influences. In designing foods for any target group, it is important to consider intrinsic and extrinsic characteristics which may contribute to palatability, and acceptability of foods. Objective: To assess age and gender influences on sensory perceptions of novel low cost nutrient-rich food products developed using traditional Ghanaian food ingredients. Materials and Methods: In this study, a range of food products were developed from Ghanaian traditional food sources using the Food Multimix (FMM) concept. These products were subjected to sensory evaluation to assess the role of sensory perception on their acceptability among different target age groups across the life cycle (aged 11-68 years olds) and to ascertain any possible influences of gender on preference and choice. Variables including taste, odour, texture, flavour and appearance were tested and the results captured on a Likert scale and scores of likeness and acceptability analysed. Multivariate analyses were used to develop prediction models for targeted recipe development for different target groups. Multiple factor analysis of variance (ANOVA) and logistic linear regression were employed to test the strength of acceptability and to ascertain age and gender influences on product preference. Results: The results showed a positive trend in acceptability (r = 0.602) which tended towards statistical significance (p = 0.065) with very high product favourability rating (91% acceptability; P=0.005). However, age [odds ratios=1.44 (11-15 years old) odds ratios=2.01 (18-68 years old) and gender (P=0.000)] were major influences on product preference with children and females (irrespective of age) showing clear preferences or dislike of products containing certain particular ingredients. Conclusion: These findings are potentially useful in planning recipes for feeding interventions involving different vulnerable and target groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a numerical study of the Reynolds number and scaling effects in microchannel flows. The configuration includes a rectangular, high-aspect ratio microchannel with heat sinks, similar to an experimental setup. Water at ambient temperature is used as a coolant fluid and the source of heating is introduced via electronic cartridges in the solids. Two channel heights, measuring 0.3 mm and 1 mm are considered at first. The Reynolds number varies in a range of 500-2200, based on the hydraulic diameter. Simulations are focused on the Reynolds number and channel height effects on the Nusselt number. It is found that the Reynolds number has noticeable influences on the local Nusselt number distributions, which are in agreement with other studies. The numerical predictions of the dimensionless temperature of the fluid agree fairly well with experimental measurements; however the dimensionless temperature of the solid does exhibit a significant discrepancy near the channel exit, similar to those reported by other researchers. The present study demonstrates that there is a significant scaling effect at small channel height, typically 0.3 mm, in agreement with experimental observations. This scaling effect has been confirmed by three additional simulations being carried out at channel heights of 0.24 mm, 0.14 mm and 0.1 mm, respectively. A correlation between the channel height and the normalized Nusselt number is thus proposed, which agrees well with results presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uptake and diffusion of solvents across polymer membranes is important in controlled drug delivery, effects on drug uptake into, for example, infusion bags and containers, as well as transport across protective clothing. Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy has been used to monitor the effects of different solvents on the diffusion of a model compound, 4-cyanophenol (CNP) across silicone membrane and on the equilibrium concentration of CNP obtained in the membrane following diffusion. ATR-FTIR spectroscopic imaging of membrane diffusion was used to gain an understanding of when the boundary conditions applied to Fick's second law, used to model the diffusion of permeants across the silicone membrane do not hold. The imaging experiments indicated that when the solvent was not taken up appreciably into the membrane, the presence of discrete solvent pools between the ATR crystal and the silicone membrane can affect the diffusion profile of the permeant. This effect is more significant if the permeant has a high solubility in the solvent. In contrast, solvents that are taken up into the membrane to a greater extent, or those where the solubility of the permeant in the vehicle is relatively low, were found to show a good fit to the diffusion model. As such these systems allow the ATR-FTIR spectroscopic approach to give mechanistic insight into how the particular solvents enhance permeation. The solubility of CNP in the solvent and the uptake of the solvent into the membrane were found to be important influences on the equilibrium concentration of the permeant obtained in the membrane following diffusion. In general, solvents which were taken up to a significant extent into the membrane and which caused the membrane to swell increased the diffusion coefficient of the permeant in the membrane though other factors such as solvent viscosity may also be important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transport of particulate clay occurs during some extremely cold weather conditions typically in the winter in the far North area. During the transport and temporary storage time, the clay may cake inside a rail or road wagon or in a silo, and consequently be difficult to be discharged from the containers. This paper studied caking strength of a granulated clay powder with a certain water moisture content of 18% for influences of temperature, packing stress and freezing time. The temperature tested was -5 oC, -10 oC and -20 oC. Because the clay powder may be packed at different bed depth, the study was undertaken across the packing stress range at 8.3 kPa (1 m bed depth), 25.0 kPa (3 m) and 75.0 kPa (9 m). Freezing time varied between 4 hours (transport) and 18 hours (overnight). During the tests, failure of caked materials was measured using a QTS texture analyzer and the caking strength of frozen samples was calculated. Influences on freeze caking of granular clay in storage or transport are discussed briefly. Some conclusions are made at the end of the paper,including recommendations for practical methods for mitigating these problems.