10 resultados para in segregation
em Greenwich Academic Literature Archive - UK
Resumo:
The objective of this work is to present a new scheme for temperature-solute coupling in a solidification model, where the temperature and concentration fields simultaneously satisfy the macro-scale transport equations and, in the mushy region, meet the constraints imposed by the thermodynamics and the local scale processes. A step-by-step explanation of the macrosegregation algorithm, implemented in the finite volume unstructured mesh multi-physics modelling code PHYSICA, is initially presented and then the proposed scheme is validated against experimental results obtained by Krane for binary and a ternary alloys.
Resumo:
In this paper, the application of a continuum model is presented, which deals with the discharge of multi-component granular mixtures in core flow mode. The full model description is given (including the constitutive models for the segregation mechanism) and the interactions between particles at the microscopic level are parametrised in order to predict the development of stagnant zone boundaries during core flow discharges. Finally, the model is applied to a real industrial problem and predictions are made for the segregation patterns developed during mixture discharge in core flow mode.
Resumo:
A continuum model of the flow of granular material during silo filling using a viscoplastic constitutive relation is presented in this paper. The constitutive model is based on the Drucker-Prager plasticity yield function. The simulation results give a realistic representation of complex features of granular flows during filling processes, such as heap formation and non-zero inclination angle of the material-air interface. The model is also coupled within the same framework with novel micro-mechanical parametrisations and the process of segregation during filling of granular mixtures can also be modelled.
Resumo:
Abstract not available
Resumo:
In this paper, the framework is described for the modelling of granular material by employing Computational Fluid Dynamics (CFD). This is achieved through the use and implementation in the continuum theory of constitutive relations, which are derived in a granular dynamics framework and parametrise particle interactions that occur at the micro-scale level. The simulation of a process often met in bulk solids handling industrial plants involving granular matter, (i.e. filling of a flat-bottomed bin with a binary material mixture through pneumatic conveying-emptying of the bin in core flow mode-pneumatic conveying of the material coming out of a the bin) is presented. The results of the presented simulation demonstrate the capability of the numerical model to represent successfully key granular processes (i.e. segregation/degradation), the prediction of which is of great importance in the process engineering industry.
Resumo:
In this paper a continuum model for the prediction of segregation in granular material is presented. The numerical framework, a 3-D, unstructured grid, finite-volume code is described, and the micro-physical parametrizations, which are used to describe the processes and interactions at the microscopic level that lead to segregation, are analysed. Numerical simulations and comparisons with experimental data are then presented and conclusions are drawn on the capability of the model to accurately simulate the behaviour of granular matter during flow.
Resumo:
In this paper, a Computational Fluid Dynamics framework is presented for the modelling of key processes which involve granular material (i.e. segregation, degradation, caking). Appropriate physical models and sophisticated algorithms have been developed for the correct representation of the different material components in a granular mixture. The various processes, which arise from the micromechanical properties of the different mixture species can be obtained and parametrised in a DEM / experimental framework, thus enabling the continuum theory to correctly account for the micromechanical properties of a granular system. The present study establishes the link between the micromechanics and continuum theory and demonstrates the model capabilities in simulations of processes which are of great importance to the process engineering industry and involve granular materials in complex geometries.
Resumo:
Problems in the preservation of the quality of granular material products are complex and arise from a series of sources during transport and storage. In either designing a new plant or, more likely, analysing problems that give rise to product quality degradation in existing operations, practical measurement and simulation tools and technologies are required to support the process engineer. These technologies are required to help in both identifying the source of such problems and then designing them out. As part of a major research programme on quality in particulate manufacturing computational models have been developed for segregation in silos, degradation in pneumatic conveyors, and the development of caking during storage, which use where possible, micro-mechanical relationships to characterize the behaviour of granular materials. The objective of the work presented here is to demonstrate the use of these computational models of unit processes involved in the analysis of large-scale processes involving the handling of granular materials. This paper presents a set of simulations of a complete large-scale granular materials handling operation, involving the discharge of the materials from a silo, its transport through a dilute-phase pneumatic conveyor, and the material storage in a big bag under varying environmental temperature and humidity conditions. Conclusions are drawn on the capability of the computational models to represent key granular processes, including particle size segregation, degradation, and moisture migration caking.
Resumo:
Segregation or de-blending of bulk particulates is a problem that is encountered in many industrial sectors. The magnitude of segregation can often determine whether a complete production batch can be transferred for onward processing within the plant or released to market. It is a phenomenon that impacts directly upon the profitability of a process. Segregation can occur through a coincidence of a range of variables that relate to the process and bulk particulate properties, common mechanisms for this include; percolation, surface effect (rolling) and elutriation. The importance to industry of predicting the sensitivity of bulk particulates to segregation cannot be under-estimated, and to this end various test procedures have been developed. Within many industries striving to improve product quality and reduce wastage, the determination of variability in blend consistency caused by segregation is an increasing priority. This paper considers recent work undertaken to evaluate the effects of multiple handling operations on the degree of segregation that results. The bulk properties of segregability (and resulting flowability) can not only influence the product consistency, but can have great influence over the process (production) control and performance.