4 resultados para host-guest systems
em Greenwich Academic Literature Archive - UK
Resumo:
Guest editorial
Resumo:
The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.
Resumo:
The powerful general Pacala-Hassell host-parasitoid model for a patchy environment, which allows host density–dependent heterogeneity (HDD) to be distinguished from between-patch, host density–independent heterogeneity (HDI), is reformulated within the class of the generalized linear model (GLM) family. This improves accessibility through the provision of general software within well–known statistical systems, and allows a rich variety of models to be formulated. Covariates such as age class, host density and abiotic factors may be included easily. For the case where there is no HDI, the formulation is a simple GLM. When there is HDI in addition to HDD, the formulation is a hierarchical generalized linear model. Two forms of HDI model are considered, both with between-patch variability: one has binomial variation within patches and one has extra-binomial, overdispersed variation within patches. Examples are given demonstrating parameter estimation with standard errors, and hypothesis testing. For one example given, the extra-binomial component of the HDI heterogeneity in parasitism is itself shown to be strongly density dependent.
Resumo:
This paper describes a methodology for deploying flexible dynamic configuration into embedded systems whilst preserving the reliability advantages of static systems. The methodology is based on the concept of decision points (DP) which are strategically placed to achieve fine-grained distribution of self-management logic to meet application-specific requirements. DP logic can be changed easily, and independently of the host component, enabling self-management behavior to be deferred beyond the point of system deployment. A transparent Dynamic Wrapper mechanism (DW) automatically detects and handles problems arising from the evaluation of self-management logic within each DP and ensures that the dynamic aspects of the system collapse down to statically defined default behavior to ensure safety and correctness despite failures. Dynamic context management contributes to flexibility, and removes the need for design-time binding of context providers and consumers, thus facilitating run-time composition and incremental component upgrade.