23 resultados para grid computing
em Greenwich Academic Literature Archive - UK
Resumo:
The factors that are driving the development and use of grids and grid computing, such as size, dynamic features, distribution and heterogeneity, are also pushing to the forefront service quality issues. These include performance, reliability and security. Although grid middleware can address some of these issues on a wider scale, it has also become imperative to ensure adequate service provision at local level. Load sharing in clusters can contribute to the provision of a high quality service, by exploiting both static and dynamic information. This paper is concerned with the presentation of a load sharing scheme, that can satisfy grid computing requirements. It follows a proactive, non preemptive and distributed approach. Load information is gathered continuously before it is needed, and a task is allocated to the most appropriate node for execution. Performance and reliability are enhanced by the decentralised nature of the scheme and the symmetric roles of the nodes. In addition, the scheme exhibits transparency characteristics that facilitate integration with the grid.
Resumo:
Review of: Rosalind W. Picard, Affective Computing
Resumo:
We report on practical experience using the Oxford BSP Library to parallelize a large electromagnetic code, the British Aerospace finite-difference time-domain code EMMA T:FD3D. The Oxford BS Library is one of the first realizations of the Bulk Synchronous Parallel computational model to be targeted at numerically intensive scientific (typically Fortran) computing. The BAe EMMA code is one of the first large-scale applications to be parallelized using this library, and it is an important demonstration of the cost effectiveness of the BSP approach. We illustrate how BSP cost-modelling techniques can be used to predict and optimize performance for single-source programs across different parallel platforms. We provide predicted and observed performance figures for an industrial-strength, single-source parallel code for a variety of real parallel architectures: shared memory multiprocessors, workstation clusters and massively parallel platforms.
Resumo:
The last few years have seen a substantial increase in the geometric complexity for 3D flow simulation. In this paper we describe the challenges in generating computation grids for 3D aerospace configuations and demonstrate the progress made to eventually achieve a push button technology for CAD to visualized flow. Special emphasis is given to the interfacing from the grid generator to the flow solver by semi-automatic generation of boundary conditions during the grid generation process. In this regard, once a grid has been generated, push button technology of most commercial flow solvers has been achieved. This will be demonstrated by the ad hoc simulation for the Hopper configuration.
Resumo:
Social network analysts have tried to capture the idea of social role explicitly by proposing a framework that precisely gives conditions under which group actors are playing equivalent roles. They term these methods positional analysis techniques. The most general definition is regular equivalence which captures the idea that equivalent actors are related in a similar way to equivalent alters. Regular equivalence gives rise to a whole class of partitions on a network. Given a network we have two different computational problems. The first is how to find a particular regular equivalence. An algorithm exists to find the largest regular partition but there are not efficient algorithms to test whether there is a regular k-partition. That is a partition in k groups that is regular. In addition, when dealing with real data, it is unlikely that any regular partitions exist. To overcome this problem relaxations of regular equivalence have been proposed along with optimisation techniques to find nearly regular partitions. In this paper we review the algorithms that have developed to find particular regular equivalences and look at some of the recent theoretical results which give an insight into the complexity of finding regular partitions.
Resumo:
Sound waves are propagating pressure fluctuations, which are typically several orders of magnitude smaller than the pressure variations in the flow field that account for flow acceleration. On the other hand, these fluctuations travel at the speed of sound in the medium, not as a transported fluid quantity. Due to the above two properties, the Reynolds averaged Navier–Stokes equations do not resolve the acoustic fluctuations. This paper discusses a defect correction method for this type of multi-scale problems in aeroacoustics. Numerical examples in one dimensional and two dimensional are used to illustrate the concept. Copyright (C) 2002 John Wiley & Sons, Ltd.
Resumo:
In this article, suggestions are made for introducing an individual element into formative assessment of the ability to use computer software for statistics.
Resumo:
Computer equipment, once viewed as leading edge, is quickly condemned as obsolete and banished to basement store rooms or rubbish bins. The magpie instincts of some of the academics and technicians at the University of Greenwich, London, preserved some such relics in cluttered offices and garages to the dismay of colleagues and partners. When the University moved into its new campus in the historic buildings of the Old Royal Naval College in the center of Greenwich, corridor space in King William Court provided an opportunity to display some of this equipment so that students could see these objects and gain a more vivid appreciation of their subject's history.
Resumo:
This paper addresses some controversial issues relating to two main questions. Firstly, we discuss 'man-in-the loop' issues in SAACS. Some people advocate this must always be so that man's decisions can override autonomic components. In this case, the system has two subsystems - man and machine. Can we, however, have a fully autonomic machine - with no man in sight; even for short periods of time? What kinds of systems require man to always be in the loop? What is the optimum balance in self-to-human control? How do we determine the optimum? How far can we go in describing self-behaviour? How does a SAACS system handle unexpected behaviour? Secondly, what are the challenges/obstacles in testing SAACS in the context of self/human dilemma? Are there any lesson to be learned from other programmes e.g. Star-wars, aviation and space explorations? What role human factors and behavioural models play whilst in interacting with SAACS?.
Resumo:
A simulation program has been developed to calculate the power-spectral density of thin avalanche photodiodes, which are used in optical networks. The program extends the time-domain analysis of the dead-space multiplication model to compute the autocorrelation function of the APD impulse response. However, the computation requires a large amount of memory space and is very time consuming. We describe our experiences in parallelizing the code using both MPI and OpenMP. Several array partitioning schemes and scheduling policies are implemented and tested Our results show that the OpenMP code is scalable up to 64 processors on an SGI Origin 2000 machine and has small average errors.
Resumo:
This paper presents an investigation into dynamic self-adjustment of task deployment and other aspects of self-management, through the embedding of multiple policies. Non-dedicated loosely-coupled computing environments, such as clusters and grids are increasingly popular platforms for parallel processing. These abundant systems are highly dynamic environments in which many sources of variability affect the run-time efficiency of tasks. The dynamism is exacerbated by the incorporation of mobile devices and wireless communication. This paper proposes an adaptive strategy for the flexible run-time deployment of tasks; to continuously maintain efficiency despite the environmental variability. The strategy centres on policy-based scheduling which is informed by contextual and environmental inputs such as variance in the round-trip communication time between a client and its workers and the effective processing performance of each worker. A self-management framework has been implemented for evaluation purposes. The framework integrates several policy-controlled, adaptive services with the application code, enabling the run-time behaviour to be adapted to contextual and environmental conditions. Using this framework, an exemplar self-managing parallel application is implemented and used to investigate the extent of the benefits of the strategy
Resumo:
This panel paper sets out to discuss what self-adaptation means, and to explore the extent to which current autonomic systems exhibit truly self-adaptive behaviour. Many of the currently cited examples are clearly adaptive, but debate remains as to what extent they are simply following prescribed adaptation rules within preset bounds, and to what extent they have the ability to truly learn new behaviour. Is there a standard test that can be applied to differentiate? Is adaptive behaviour sufficient anyway? Other autonomic computing issues are also discussed.
Resumo:
Fractal video compression is a relatively new video compression method. Its attraction is due to the high compression ratio and the simple decompression algorithm. But its computational complexity is high and as a result parallel algorithms on high performance machines become one way out. In this study we partition the matching search, which occupies the majority of the work in a fractal video compression process, into small tasks and implement them in two distributed computing environments, one using DCOM and the other using .NET Remoting technology, based on a local area network consists of loosely coupled PCs. Experimental results show that the parallel algorithm is able to achieve a high speedup in these distributed environments.