13 resultados para graph entropy
em Greenwich Academic Literature Archive - UK
Resumo:
A parallel method for the dynamic partitioning of unstructured meshes is described. The method introduces a new iterative optimization technique known as relative gain optimization which both balances the workload and attempts to minimize the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more rapidly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel technique combined with a force-directed placement algorithm. The multilevel process groups vertices to form clusters, uses the clusters to define a new graph and is repeated until the graph size falls below some threshold. The coarsest graph is then given an initial layout and the layout is successively refined on all the graphs starting with the coarsest and ending with the original. In this way the multilevel algorithm both accelerates and gives a more global quality to the force- directed placement. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on a number of examples ranging from 500 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 30 seconds for a 10,000 vertex graph to around 10 minutes for the largest graph. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
In attempts to conserve the species diversity of trees in tropical forests, monitoring of diversity in inventories is essential. For effective monitoring it is crucial to be able to make meaningful comparisons between different regions, or comparisons of the diversity of a region at different times. Many species diversity measures have been defined, including the well-known abundance and entropy measures. All such measures share a number of problems in their effective practical use. However, probably the most problematic is that they cannot be used to meaningfully assess changes, since thay are only concerned with the number of species or the proportions of the population/sample which they constitute. A natural (though simplistic) model of a species frequency distribution is the multinomial distribution. It is shown that the likelihood analysis of samples from such a distribution are closely related to a number of entropy-type measures of diversity. Hence a comparison of the species distribution on two plots, using the multinomial model and likelihood methods, leads to generalised cross-entropy as the LRT test statistic of the null that the species distributions are the same. Data from 30 contiguous plots in a forest in Sumatra are analysed using these methods. Significance tests between all pairs of plots yield extremely low p-values, indicating strongly that it ought to been "Obvious" that the observed species distributions are different on different plots. In terms of how different the plots are, and how these differences vary over the whole study site, a display of the degrees of freedom of the test, (equivalent to the number of shared species) seems to be the most revealing indicator, as well as the simplest.
Resumo:
We describe a heuristic method for drawing graphs which uses a multilevel framework combined with a force-directed placement algorithm. The multilevel technique matches and coalesces pairs of adjacent vertices to define a new graph and is repeated recursively to create a hierarchy of increasingly coarse graphs, G0, G1, …, GL. The coarsest graph, GL, is then given an initial layout and the layout is refined and extended to all the graphs starting with the coarsest and ending with the original. At each successive change of level, l, the initial layout for Gl is taken from its coarser and smaller child graph, Gl+1, and refined using force-directed placement. In this way the multilevel framework both accelerates and appears to give a more global quality to the drawing. The algorithm can compute both 2 & 3 dimensional layouts and we demonstrate it on examples ranging in size from 10 to 225,000 vertices. It is also very fast and can compute a 2D layout of a sparse graph in around 12 seconds for a 10,000 vertex graph to around 5-7 minutes for the largest graphs. This is an order of magnitude faster than recent implementations of force-directed placement algorithms.
Resumo:
The graph-partitioning problem is to divide a graph into several pieces so that the number of vertices in each piece is the same within some defined tolerance and the number of cut edges is minimised. Important applications of the problem arise, for example, in parallel processing where data sets need to be distributed across the memory of a parallel machine. Very effective heuristic algorithms have been developed for this problem which run in real-time, but it is not known how good the partitions are since the problem is, in general, NP-complete. This paper reports an evolutionary search algorithm for finding benchmark partitions. A distinctive feature is the use of a multilevel heuristic algorithm to provide an effective crossover. The technique is tested on several example graphs and it is demonstrated that our method can achieve extremely high quality partitions significantly better than those found by the state-of-the-art graph-partitioning packages.
Resumo:
In this chapter we look at JOSTLE, the multilevel graph-partitioning software package, and highlight some of the key research issues that it addresses. We first outline the core algorithms and place it in the context of the multilevel refinement paradigm. We then look at issues relating to its use as a tool for parallel processing and, in particular, partitioning in parallel. Since its first release in 1995, JOSTLE has been used for many mesh-based parallel scientific computing applications and so we also outline some enhancements such as multiphase mesh-partitioning, heterogeneous mapping and partitioning to optimise subdomain shape
Resumo:
In this paper, we shall critically examine a special class of graph matching algorithms that follow the approach of node-similarity measurement. A high-level algorithm framework, namely node-similarity graph matching framework (NSGM framework), is proposed, from which, many existing graph matching algorithms can be subsumed, including the eigen-decomposition method of Umeyama, the polynomial-transformation method of Almohamad, the hubs and authorities method of Kleinberg, and the kronecker product successive projection methods of Wyk, etc. In addition, improved algorithms can be developed from the NSGM framework with respects to the corresponding results in graph theory. As the observation, it is pointed out that, in general, any algorithm which can be subsumed from NSGM framework fails to work well for graphs with non-trivial auto-isomorphism structure.
Resumo:
This paper examines different ways of measuring similarity between software design models for Case Based Reasoning (CBR) to facilitate reuse of software design and code. The paper considers structural and behavioural aspects of similarity between software design models. Similarity metrics for comparing static class structures are defined and discussed. A Graph representation of UML class diagrams and corresponding similarity measures for UML class diagrams are defined. A full search graph matching algorithm for measuring structural similarity diagrams based on the identification of the Maximum Common Sub-graph (MCS) is presented. Finally, a simple evaluation of the approach is presented and discussed.
Resumo:
This paper describes ways in which emergence engineering principles can be applied to the development of distributed applications. A distributed solution to the graph-colouring problem is used as a vehicle to illustrate some novel techniques. Each node acts autonomously to colour itself based only on its local view of its neighbourhood, and following a simple set of carefully tuned rules. Randomness breaks symmetry and thus enhances stability. The algorithm has been developed to enable self-configuration in wireless sensor networks, and to reflect real-world configurations the algorithm operates with 3 dimensional topologies (reflecting the propagation of radio waves and the placement of sensors in buildings, bridge structures etc.). The algorithm’s performance is evaluated and results presented. It is shown to be simultaneously highly stable and scalable whilst achieving low convergence times. The use of eavesdropping gives rise to low interaction complexity and high efficiency in terms of the communication overheads.
Resumo:
A parallel method for the dynamic partitioning of unstructured meshes is described. The method introduces a new iterative optimisation technique known as relative gain optimisation which both balances the workload and attempts to minimise the interprocessor communications overhead. Experiments on a series of adaptively refined meshes indicate that the algorithm provides partitions of an equivalent or higher quality to static partitioners (which do not reuse the existing partition) and much more rapidly. Perhaps more importantly, the algorithm results in only a small fraction of the amount of data migration compared to the static partitioners.