2 resultados para generic model
em Greenwich Academic Literature Archive - UK
Resumo:
Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, flow in elastic pipes and blood vessels and extrusion of metals through dies. However a comprehensive computational model of these multi-physics phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply even to the extent in metal forming, for example, that the deformation of the die is totally ignored. More recently, strategies for solving the full coupling between the fluid and soild mechanics behaviour have developed. Conventionally, the computational modelling of fluid structure interaction is problematical since computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. In the past the concurrent, but rather disparate, development paths for the finite element and finite volume methods have resulted in numerical software tools for CFD and CSM that are different in almost every respect. Hence, progress is frustrated in modelling the emerging multi-physics problem of fluid structure interaction in a consistent manner. Unless the fluid-structure coupling is either one way, very weak or both, transferring and filtering data from one mesh and solution procedure to another may lead to significant problems in computational convergence. Using a novel three phase technique the full interaction between the fluid and the dynamic structural response are represented. The procedure is demonstrated on some challenging applications in complex three dimensional geometries involving aircraft flutter, metal forming and blood flow in arteries.
Resumo:
This paper presents a generic framework that can be used to describe study plans using meta-data. The context of this research and associated technologies and standards is presented. The approach adopted here has been developed within the mENU project that aims to provide a model for a European Networked University. The methodology for the design of the generic Framework is discussed and the main design requirements are presented. The approach adopted was based on a set of templates containing meta-data required for the description of programs of study and consisting of generic building elements annotated appropriately. The process followed to develop the templates is presented together with a set of evaluation criteria to test the suitability of the approach. The templates structure is presented and example templates are shown. A first evaluation of the approach has shown that the proposed framework can provide a flexible and competent means for the generic description of study plans for the purposes of a networked university.