3 resultados para general equilibrium model

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The DRAMA library, developed within the European Commission funded (ESPRIT) project DRAMA, supports dynamic load-balancing for parallel (message-passing) mesh-based applications. The target applications are those with dynamic and solution-adaptive features. The focus within the DRAMA project was on finite element simulation codes for structural mechanics. An introduction to the DRAMA library will illustrate that the very general cost model and the interface designed specifically for application requirements provide simplified and effective access to a range of parallel partitioners. The main body of the paper will demonstrate the ability to provide dynamic load-balancing for parallel FEM problems that include: adaptive meshing, re-meshing, the need for multi-phase partitioning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A numerical scheme for coupling temperature and concentration fields in a general solidification model is presented. A key feature of this scheme is an explicit time stepping used in solving the governing thermal and solute conservation equations. This explicit approach results in a local point-by-point coupling scheme for the temperature and concentration and avoids the multi-level iteration required by implicit time stepping schemes. The proposed scheme is validated by predicting the concentration field in a benchmark solidification problem. Results compare well with an available similarity solution. The simplicity of the proposed explicit scheme allows for the incorporation of complex microscale models into a general solidification model. This is demonstrated by investigating the role of dendrite coarsening on the concentration field in the solidification benchmark problem.