7 resultados para freeze fracture
em Greenwich Academic Literature Archive - UK
Resumo:
Large-scale molecular dynamics simulations have been performed on canonical ensembles to model the adhesion and indentation characteristics of 3-D metallic nano-scale junctions in tip-substrate geometries, and the crack propagation in 2-D metallic lattices. It is shown that irreversible flows in nano-volumes of materials control the behaviour of the 3-D nano-contacts, and that local diffusional flow constitutes the atomistic mechanism underlying these plastic flows. These simulations show that the force of adhesion in metallic nano-contacts is reduced when adsorbate monolayers are present at the metal—metal junctions. Our results are in agreement with the conclusions of very accurate point-contact experiments carried out in this field. Our fracture simulations reveal that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures, the nucleation of dislocations is shown to cause a brittle-to-ductile transition. Limiting crack propagation velocities are computed for different strain rates and a dynamic instability is shown to control the crack movement beyond this limiting velocity, in line with the recent experimental results.
Resumo:
The use of computational modelling in examining process engineering issues is very powerful. It has been used in the development of the HIsmelt process from its concept. It is desirable to further water-cool the HIsmelt vessel to reduce downtime for replacing refractory. Water-cooled elements close to a metal bath run the risk of failure. This generally occurs when a process perturbation causes the freeze and refractory layers to come away from the water-cooled element, which is then exposed to liquid metal. The element fails as they are unable to remove all the heat. Modelling of the water-cooled element involves modelling the heat transfer, fluid flow, stress and solidification for a localised section of the reaction vessel. The complex interaction between the liquid slag and the refractory applied to the outside of thewater-cooled element is also being examined to model the wear of this layer. The model is being constructed in Physica, a CFD code developed at the University of Greenwich. Modelling of this system has commenced with modelling solidification test cases. These test cases have been used to validate the CFD code’s capability to model the solidification in this system. A model to track the penetration of slag into refractory has also been developed and tested.
Resumo:
The trend towards miniaturization of electronic products leads to the need for very small sized solder joints. Therefore, there is a higher reliability risk that too large a fraction of solder joints will transform into Intermetallic Compounds (IMCs) at the solder interface. In this paper, fracture mechanics study of the IMC layer for SnPb and Pb-free solder joints was carried out using finite element numerical computer modelling method. It is assumed that only one crack is present in the IMC layer. Linear Elastic Fracture Mechanics (LEFM) approach is used for parametric study of the Stress Intensity Factors (SIF, KI and KII), at the predefined crack in the IMC layer of solder butt joint tensile sample. Contrary to intuition, it is revealed that a thicker IMC layer in fact increases the reliability of solder joint for a cracked IMC. Value of KI and KII are found to decrease with the location of the crack further away from the solder interfaces while other parameters are constant. Solder thickness and strain rate were also found to have a significant influence on the SIF values. It has been found that soft solder matrix generates non-uniform plastic deformation across the solder-IMC interface near the crack tip that is responsible to obtain higher KI and KII.
Resumo:
In this study, a simplified Acoustic Emission (AE) equipment, in essence an AE signal conditioner and a USB (Universal Serial Bus) data acquisition system, is used to study what happens in paper structures during mechanical loading. By the use of such equipment, some parameters that can be extracted are e.g. the stress and strain at onset of AE, the stress and strain at the onset of rapid AE defined as some numerical factor (larger then one) times the initial emission rate, the emission rate at the first stage of loading and the stress and strain at final failure i.e. when the specimen loses its load carrying ability.In this study however, the interest is focused on one particular parameter i.e. the elastic strain energy density W c at onset of AE. This is a parameter with a clear physical meaning and in this study, the correlation between this parameter and a fracture toughness measure, is investigated.The conclusion is that when nine different paper materials (with a large span regarding properties) are considered, there is a correlation (however not linear) between these two parameters.
Resumo:
Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.
Resumo:
Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.