4 resultados para flame soot

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A practical CFD method is presented in this study to predict the generation of toxic gases in enclosure fires. The model makes use of local combustion conditions to determine the yield of carbon monoxide, carbon dioxide, hydrocarbon, soot and oxygen. The local conditions used in the determination of these species are the local equivalence ratio (LER) and the local temperature. The heat released from combustion is calculated using the volumetric heat source model or the eddy dissipation model (EDM). The model is then used to simulate a range of reduced-scale and full-scale fire experiments. The model predictions for most of the predicted species are then shown to be in good agreement with the test results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, coupled fire and evacuation simulation tools are used to simulate the Station Nightclub fire. This study differs from the analysis conducted by NIST in three key areas; (1)an enhanced flame spread model and (2)a toxicity generation model are used, (3)the evacuation is coupled to the fire simulation. Predicted early burning locations in the full-scale fire simulation are in line with photographic evidence and the predicted onset of flashover is similar to that produced by NIST. However, it is suggested that both predictions of the flashover time are approximately 15 sec earlier than actually occurred. Three evacuation scenarios are then considered, two of which are coupled with the fire simulation. The coupled fire and evacuation simulation suggests that 180 fatalities result from a building population of 460. With a 15 sec delay in the fire timeline, the evacuation simulation produces 84 fatalities which are in good agreement with actual number of fatalities. An important observation resulting from this work is that traditional fire engineering ASET/RSET calculations which do not couple the fire and evacuation simulations have the potential to be considerably over optimistic in terms of the level of safety achieved by building designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate a number of gas flames for fire polishing borosilicate glass capillaries used in the manufacturing of IVF micro-pipettes. Hydrofluoric acid (HF) was also used as an alternative to finish the pipette end. Glass micro tools in the IVF industry are drawn from hollow glass capillaries of diameter 1 mm. These capillaries are cut manually to a length of 100 mm from hollow glass rods resulting in sharp and chipped edges. These capillaries are held in a customised holder having padding of soft silicone or rubber. Sharp and uneven edges of these capillaries pick up particles of rubber or soft silicone shavings, rendering them ineffective for IVF treatments. The working range of borosilicate glass is 800-1,200 degrees C. The experiments involved analysis of fire polishing process for borosilicate glass capillaries using candle, butane, propane, 2350 butane propane, oxyacetylene gas flames, finding the optimum distance of the capillary relative to the flame, optimum time for which the capillary should be held in the flame and optimum region of the flame which gives the required temperature range. The results show that 2350 butane propane gas mix is optimum for fire polishing of borosilicate glass capillaries. The paper is concluded by comparing the results of fire polishing with the results of acid polishing, in which HF of 1.6% concentration is used to etch the ends of the borosilicate glass pipettes.