3 resultados para firm efficiency

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The firm adhesion of flavouring particles onto crisp surfaces during coating processes is a major concern in the snack production industry. Detachment of flavouring powders from products during handling and production stages can lead to substantial financial losses for the industry, in terms of variable flavour performance and extended cleaning down time of fugitive particle build-up on process equipment. Understanding the adhesion strength of applied bulk particulates used for flavouring formulations will help analysts to evaluate the efficiency of coating processes and potentially enable them to assess the adhesion strength of newly formulated flavouring powder prior to commitment to full scale plant trials. A rapid prototype of a novel adhesion tester has been designed and constructed. The apparatus operates according to the principle of impact force acting on particles attached to the surface of the food substrate. The main component is a circular plate to which four sample holders are attached and which is subjected to vertical travel down a guide shaft. Several flavouring powders have been tested extensively. By plotting the detachment versus impact force, the difference obtained between adhesion strength of different flavouring powders (which is a strong function of particle size) has been discussed.