2 resultados para fatty acid profile

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM: To investigate the effect of repeated culture in a rich medium on certain genetic, metabolic, pathogenic and structural characteristics of fresh isolates of Bacillus thuringiensis. METHODS AND RESULTS: Four strains of B. thuringiensis, which had been isolated in vegetative form from leaf surfaces, were grown for 500 generations in batch culture in a rich medium. One of the strains, S4g, differed from the parent in the following respects: greater cell width; changed plasmid profile; complete loss of ability to produce delta-endotoxins; loss of ability to produce beta-exotoxin and disruption of vip3 gene; radically different fatty acid composition; and altered metabolic activity. Two of the other evolved strains (S1g and S6g) showed differences in fatty acid profiles compared with the parents. Genetic finger-printing showed that there were also mutations in the cry genes of two of the evolved strains (S1g and S2g). The delta-endotoxins of strain S6g were significantly less toxic to the larvae of Pieris brassica compared with those of the parent and it also differed in the plasmid content. CONCLUSION: Radical and unpredictable changes can occur in fresh isolates of B. thuringiensis when subjected to growth in the laboratory. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first analysis of a Gram positive and biotechnologically significant bacterium after repeated laboratory culture. It is of great relevance to the biotechnological exploitation of B. thuringiensis that prolonged growth of environmental isolates on laboratory culture media can have profound effects on their structure, genome and virulence determinants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.