2 resultados para family systems approach

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Realizing scalable performance on high performance computing systems is not straightforward for single-phenomenon codes (such as computational fluid dynamics [CFD]). This task is magnified considerably when the target software involves the interactions of a range of phenomena that have distinctive solution procedures involving different discretization methods. The problems of addressing the key issues of retaining data integrity and the ordering of the calculation procedures are significant. A strategy for parallelizing this multiphysics family of codes is described for software exploiting finite-volume discretization methods on unstructured meshes using iterative solution procedures. A mesh partitioning-based SPMD approach is used. However, since different variables use distinct discretization schemes, this means that distinct partitions are required; techniques for addressing this issue are described using the mesh-partitioning tool, JOSTLE. In this contribution, the strategy is tested for a variety of test cases under a wide range of conditions (e.g., problem size, number of processors, asynchronous / synchronous communications, etc.) using a variety of strategies for mapping the mesh partition onto the processor topology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Embedded electronic systems in vehicles are of rapidly increasing commercial importance for the automotive industry. While current vehicular embedded systems are extremely limited and static, a more dynamic configurable system would greatly simplify the integration work and increase quality of vehicular systems. This brings in features like separation of concerns, customised software configuration for individual vehicles, seamless connectivity, and plug-and-play capability. Furthermore, such a system can also contribute to increased dependability and resource optimization due to its inherent ability to adjust itself dynamically to changes in software, hardware resources, and environment condition. This paper describes the architectural approach to achieving the goals of dynamically self-configuring automotive embedded electronic systems by the EU research project DySCAS. The architecture solution outlined in this paper captures the application and operational contexts, expected features, middleware services, functions and behaviours, as well as the basic mechanisms and technologies. The paper also covers the architecture conceptualization by presenting the rationale, concerning the architecture structuring, control principles, and deployment concept. In this paper, we also present the adopted architecture V&V strategy and discuss some open issues in regards to the industrial acceptance.