2 resultados para eucalypt stands

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Logit-Logistic (LL), Johnson's SB, and the Beta (GBD) are flexible four-parameter probability distribution models in terms of the (skewness-kurtosis) region covered, and each has been used for modeling tree diameter distributions in forest stands. This article compares bivariate forms of these models in terms of their adequacy in representing empirical diameter-height distributions from 102 sample plots. Four bivariate models are compared: SBB, the natural, well-known, and much-used bivariate generalization of SB; the bivariate distributions with LL, SB, and Beta as marginals, constructed using Plackett's method (LL-2P, etc.). All models are fitted using maximum likelihood, and their goodness-of-fits are compared using minus log-likelihood (equivalent to Akaike's Information Criterion, the AIC). The performance ranking in this case study was SBB, LL-2P, GBD-2P, and SB-2P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Johnson's SB and the logit-logistic are four-parameter distribution models that may be obtained from the standard normal and logistic distributions by a four-parameter transformation. For relatively small data sets, such as diameter at breast height measurements obtained from typical sample plots, distribution models with four or less parameters have been found to be empirically adequate. However, in situations in which the distributions are complex, for example in mixed stands or when the stand has been thinned or when working with aggregated data, then distribution models with more shape parameters may prove to be necessary. By replacing the symmetric standard logistic distribution of the logit-logistic with a one-parameter “standard Richards” distribution and transforming by a five-parameter Richards function, we obtain a new six-parameter distribution model, the “Richit-Richards”. The Richit-Richards includes the “logit-Richards”, the “Richit-logistic”, and the logit-logistic as submodels. Maximum likelihood estimation is used to fit the model, and some problems in the maximum likelihood estimation of bounding parameters are discussed. An empirical case study of the Richit-Richards and its submodels is conducted on pooled diameter at breast height data from 107 sample plots of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). It is found that the new models provide significantly better fits than the four-parameter logit-logistic for large data sets.