15 resultados para ergodicity conditions
em Greenwich Academic Literature Archive - UK
Resumo:
A monotone scheme for finite volume simulation of magnetohydrodynamic internal flows at high Hartmann number is presented. The numerical stability is analysed with respect to the electromagnetic force. Standard central finite differences applied to finite volumes can only be numerically stable if the vector products involved in this force are computed with a scheme using a fully staggered grid. The electromagnetic quantities (electric currents and electric potential) must be shifted by half the grid size from the mechanical ones (velocity and pressure). An integral treatment of the boundary layers is used in conjunction with boundary conditions for electrically conducting walls. The simulations are performed with inhomogeneous electrical conductivities of the walls and reach high Hartmann numbers in three-dimensional simulations, even though a non-adaptive grid is used.
Resumo:
When evacuating through fire environments, the presence of smoke may not only have a physiological impact on the evacuees but may also lead occupants to adapt their evacuation strategy through the adoption of another exit. This paper attempts to introduce this type of adaptive behaviour within the buildingEXODUS evacuation model through enabling occupants to make decisions concerning the selection of the most viable available exit during an evacuation involving fire. The development of this adaptive behaviour requires the introduction of several new capabilities namely, the representation of the occupants’ familiarity with the structure, the behaviour of an occupant that is engulfed in smoke and the behaviour of an occupant that is faced with a smoke barrier. The appropriateness of the redirection decision is dependent upon behavioural data gathered from real fire incidents (in the UK and USA) that is used to construct the redirection probabilities. The implementation is shown to provide a more complex and arguably more realistic representation of this behaviour than that provided previously.
Resumo:
By revealing close links among strong ergodicity, monotone, and the Feller–Reuter–Riley (FRR) transition functions, we prove that a monotone ergodic transition function is strongly ergodic if and only if it is not FRR. An easy to check criterion for a Feller minimal monotone chain to be strongly ergodic is then obtained. We further prove that a non-minimal ergodic monotone chain is always strongly ergodic. The applications of our results are illustrated using birth-and-death processes and branching processes.
Resumo:
This paper concentrates on investigating ergodicity and stability for generalised Markov branching processes with resurrection. Easy checking criteria including several clear-cut corollaries are established for ordinary and strong ergodicity of such processes. The equilibrium distribution is given in an elegant closed form for the ergodic case. The probabilistic interpretation of the results is clear and thus explained.
Resumo:
A new structure with the special property that an instantaneous reflection barrier is imposed on the ordinary birth-death processes is considered. An easy-checking criterion for the existence of such Markov processes is first obtained. The uniqueness criterion is then established. In the nonunique case, all the honest processes are explicitly constructed. Ergodicity properties for these processes are investigated. It is proved that honest processes are always ergodic without necessarily imposing any extra conditions. Equilibrium distributions for all these ergodic processes are established. Several examples are provided to illustrate our results.
Resumo:
When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the numbers of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of fire and fire suppression systems and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based, but exceeding the requirements of MSC circular 1033.
Resumo:
A new structure with the special property that instantaneous resurrection and mass disaster are imposed on an ordinary birth-death process is considered. Under the condition that the underlying birth-death process is exit or bilateral, we are able to give easily checked existence criteria for such Markov processes. A very simple uniqueness criterion is also established. All honest processes are explicitly constructed. Ergodicity properties for these processes are investigated. Surprisingly, it can be proved that all the honest processes are not only recurrent but also ergodic without imposing any extra conditions. Equilibrium distributions are then established. Symmetry and reversibility of such processes are also investigated. Several examples are provided to illustrate our results.
Resumo:
Flip-chip assembly, developed in the early 1960s, is now being positioned as a key joining technology to achieve high-density mounting of electronic components on to printed circuit boards for high-volume, low-cost products. Computer models are now being used early within the product design stage to ensure that optimal process conditions are used. These models capture the governing physics taking place during the assembly process and they can also predict relevant defects that may occur. Describes the application of computational modelling techniques that have the ability to predict a range of interacting physical phenomena associated with the manufacturing process. For example, in the flip-chip assembly process we have solder paste deposition, solder joint shape formation, heat transfer, solidification and thermal stress. Illustrates the application of modelling technology being used as part of a larger UK study aiming to establish a process route for high-volume, low-cost, sub-100-micron pitch flip-chip assembly.
Resumo:
Recently, research has been carried out to test a novel bumping method which omits the under bump metallurgy (UBM) forming process by bonding copper columns directly onto the Al pads of the silicon dies. This bumping method could be adopted to simplify the flip chip assembly process, increase the productivity and achieve a higher I/O count. Computer modelling methods are used to predict the shape of solder joints and response of the flip chip to thermal cyclic loading. The accumulated plastic strain energy at the comer solder joints is used as the damage indicator. Models with a range of design parameters have been compared for their reliability. The ranking of the relative importance of these parameters is given. Results from these analyses are being used by our industrial and academic partners to identify optimal design conditions.
Resumo:
As part of a comprehensive effort to predict the development of caking in granular materials, a mathematical model is introduced to model simultaneous heat and moisture transfer with phase change in porous media when undergoing temperature oscillations/cycling. The resulting model partial differential equations were solved using finite-volume procedures in the context of the PHYSICA framework and then applied to the analysis of sugar in storage. The influence of temperature on absorption/desorption and diffusion coefficients is coupled into the transport equations. The temperature profile, the depth of penetration of the temperature oscillation into the bulk solid, and the solids moisture content distribution were first calculated, and these proved to be in good agreement with experimental data. Then, the influence of temperature oscillation on absolute humidity, moisture concentration, and moisture migration for different parameters and boundary conditions was examined. As expected, the results show that moisture near boundary regions responds faster than farther away from them with surface temperature changes. The moisture absorption and desorption in materials occurs mainly near boundary regions (where interactions with the environment are more pronounced). Small amounts of solids moisture content, driven by both temperature and vapour concentration gradients, migrate between boundary and center with oscillating temperature.
Resumo:
In this paper we briefly describe new modelling capabilities within the airEXODUS evacuation model. These new capabilities involve the explicit ability to simulate the interaction of crew with passengers in managing evacuation situations
Resumo:
Discusses the Court of Appeal decision in Graves v Graves on determination of a tenancy by reason of common mistake and frustration. Reviews earlier case law regarding the effects on a contract of a common mistake or frustrating event. Considers the effect of the common mistaken belief held by the parties in Graves when executing a tenancy agreement that the tenant would be entitled to housing benefit, in particular whether by reason of it a condition was implied into the tenancy that the contract would be terminated if housing benefit was unavailable.
Resumo:
Transport of particulate clay occurs during some extremely cold weather conditions typically in the winter in the far North area. During the transport and temporary storage time, the clay may cake inside a rail or road wagon or in a silo, and consequently be difficult to be discharged from the containers. This paper studied caking strength of a granulated clay powder with a certain water moisture content of 18% for influences of temperature, packing stress and freezing time. The temperature tested was -5 oC, -10 oC and -20 oC. Because the clay powder may be packed at different bed depth, the study was undertaken across the packing stress range at 8.3 kPa (1 m bed depth), 25.0 kPa (3 m) and 75.0 kPa (9 m). Freezing time varied between 4 hours (transport) and 18 hours (overnight). During the tests, failure of caked materials was measured using a QTS texture analyzer and the caking strength of frozen samples was calculated. Influences on freeze caking of granular clay in storage or transport are discussed briefly. Some conclusions are made at the end of the paper,including recommendations for practical methods for mitigating these problems.