3 resultados para dynamic light scattering

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of cationic poly(N-isopropylacrylamide/4-vinylpyridine) [poly(NIPAM/4-VP)] polyelectrolyte co-polymer microgels have been prepared by surfactant free emulsion polymerization (SFEP) with varying compositions of 4-VP and NIPAM. The compositions of 4-VP were 15, 25, 35, 45, 55 wt.% relative to NIPAM. The temperature and pH responsive swelling–deswelling properties of these microgels have been investigated using dynamic light scattering (DLS) and electrophoretic mobility measurements. DLS results have shown that the particle diameter of the poly(NIPAM/4-VP) microgels decreases with increasing concentration (wt.%) of 4-VP over the 20–60 °C temperature range due to the increased amount of hydrophobic group. The particle size of all poly(NIPAM/4-VP) microgel series increases with decreasing pH, as the 4-VP units become more protonated at low pH below the pKa (5.39) of the monomer 4-VP. Electrophoretic mobility results have shown that electrophoretic mobility increases as the temperature/pH increases at a constant background ionic strength (1 × 10− 4 mol dm− 3 NaCl). These results are in good agreement with DLS results. The temperature/pH sensitivity of these microgels depends on the ratio of NIPAM/4-VP concentration in the co-polymer microgel systems. The combined temperature/pH responsiveness of these polyelectrolyte microgels can be used in applications where changes in particle size with small change in pH or temperature is of great consequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-step dispersion of HiPco single-walled carbon nanotubes in aqueous media with the use of a synthetic lyso-phosphatidylcholine was studied. Solubilization occurs through wrapping of lipid molecules around the circumference of the tubes, yielding lipid monolayers on the graphitic sidewalls as evidenced by atomic force microscopy imaging and dynamic light scattering measurements. Raman spectroscopy showed that the dispersion and centrifugation process leads to an effective enrichment of the stable aqueous suspension in carbon nanostructures with smaller diameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic structure factor of neutron quasi-elastic scattering has been calculated by Monte Carlo methods for atoms diffusing on a disordered lattice. The disorder includes not only variation in the distances between neighbouring atomic sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent intermediate scattering function which translate into a significant increase in the intensity in the wings of the quasi-elastic spectrum as compared with the Lorentzian form. The effect is particularly marked at high values of the momentum transfer and at site occupancies of the order of unity. The MC calculations demonstrate how the degree of disorder may be derived from experimental measurements of the quasi-elastic scattering. The model structure factors are compared with the experimental quasi-elastic spectrum of an amorphous metal-hydrogen alloy.