13 resultados para dynamic initiation of crack

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel multiscale model of brittle crack propagation in an Ag plate with macroscopic dimensions has been developed. The model represents crack propagation as stochastic drift-diffusion motion of the crack tip atom through the material, and couples the dynamics across three different length scales. It integrates the nanomechanics of bond rupture at the crack tip with the displacement and stress field equations of continuum based fracture theories. The finite element method is employed to obtain the continuum based displacement and stress fields over the macroscopic plate, and these are then used to drive the crack tip forward at the atomic level using the molecular dynamics simulation method based on many-body interatomic potentials. The linkage from the nanoscopic scale back to the macroscopic scale is established via the Ito stochastic calculus, the stochastic differential equation of which advances the tip to a new position on the macroscopic scale using the crack velocity and diffusion constant obtained on the nanoscale. Well known crack characteristics, such as the roughening transitions of the crack surfaces, crack velocity oscillations, as well as the macroscopic crack trajectories, are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new multi-scale model of brittle fracture growth in an Ag plate with macroscopic dimensions is proposed in which the crack propagation is identified with the stochastic drift-diffusion motion of the crack-tip atom through the material. The model couples molecular dynamics simulations, based on many-body interatomic potentials, with the continuum-based theories of fracture mechanics. The Ito stochastic differential equation is used to advance the tip position on a macroscopic scale before each nano-scale simulation is performed. Well-known crack characteristics, such as the roughening transitions of the crack surfaces, as well as the macroscopic crack trajectories are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simulation of the motion of molten aluminium inside an electrolytic cell is presented. Since the driving term of the aluminium motion is the Lorentz (j × B) body force acting within the fluid,this problem involves the solution of the magneto-hydro-dynamic equations. Different solver modules for the magnetic field computation and for the fluid motion simulation are coupled together. The interactions of all these are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrolytic cell for Aluminum production contains molten metal subject to high currents and magnetic flux density. The interaction between these two fields creates electromagnetic forces within the liquid metal and can generate oscillations of the fluid similar to the waves at the free surface of oceans and rivers. The study of this phenomenon requires the simulation of the current density field, of the magnetic flux density field and the solution of the equations of motion of the liquid mass. An attempt to analyze the dynamical behavior of this problem is made by coupling different codes, based on different numerical techniques, in a single tool. The simulations are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four non-destructive tests for determining the length of fatigue cracks within the solder joints of a 2512 surface mount resistor are investigated. The sensitivity of the tests is obtained using finite element analysis with some experimental validation. Three of the tests are mechanically based and one is thermally based. The mechanical tests all operate by applying different loads to the PCB and monitoring the strain response at the top of the resistor. The thermal test operates by applying a heat source underneath the PCB, and monitoring the temperature response at the top of the resistor. From the modelling work done, two of these tests have shown to be sensitive to cracks. Some experimental results are presented but further work is required to fully validate the simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents both modelling and experimental test data to characterise the performance of four non-destructive tests. The focus is on determining the presence and rough magnitude of thermal fatigue cracks within the solder joints for a surface mount resistor on a strip of FR4 PCB. The tests all operate by applying mechanical loads to the PCB and monitoring the strain response at the top of the resistor. The modelling results show that of the four tests investigated, three are sensitive to the presence of a crack in the joint and its magnitude. Hence these tests show promise in being able to detect cracking caused by accelerated testing. The experimental data supports these results although more validation is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents innovative work in the development of policy-based autonomic computing. The core of the work is a powerful and flexible policy-expression language AGILE, which facilitates run-time adaptable policy configuration of autonomic systems. AGILE also serves as an integrating platform for other self-management technologies including signal processing, automated trend analysis and utility functions. Each of these technologies has specific advantages and applicability to different types of dynamic adaptation. The AGILE platform enables seamless interoperability of the different technologies to each perform various aspects of self-management within a single application. The various technologies are implemented as object components. Self-management behaviour is specified using the policy language semantics to bind the various components together as required. Since the policy semantics support run-time re-configuration, the self-management architecture is dynamically composable. Additional benefits include the standardisation of the application programmer interface, terminology and semantics, and only a single point of embedding is required.