2 resultados para driving force
em Greenwich Academic Literature Archive - UK
Resumo:
The dissolution of thin film under-bump-metallization (UBM) by molten solder has been one of the most serious processing problems in electronic packaging technology. Due to a higher melting temperature and a greater Sn content, a molten lead-free solder such as eutectic SnAg has a faster dissolution rate of thin film UBM than the eutectic SnPb. The work presented in this paper focuses on the role of 0.5 wt % Cu in the base Sn–3.5%Ag solder to reduce the dissolution of the Cu bond pad in ball grid array applications. We found that after 0.5 wt % Cu addition, the rate of dissolution of Cu in the molten Sn–3.5%Ag solder slows down dramatically. Systematic experimental work was carried out to understand the dissolution behavior of Cu by the molten Sn–3.5%Ag and Sn–3.5%Ag–0.5%Cu solders at 230–250 °C, for different time periods ranging from 1 to 10 min. From the curves of consumed Cu thickness, it was concluded that 0.5 wt % Cu addition actually reduces the concentration gradient at the Cu metallization/molten solder interface which reduces the driving force of dissolution. During the dissolution, excess Cu was found to precipitate out due to heterogeneous nucleation and growth of Cu6Sn5 at the solder melt/oxide interface. In turn, more Cu can be dissolved again. This process continues with time and leads to more dissolution of Cu from the bond pad than the amount expected from the solubility limit, but it occurs at a slower rate for the molten Sn–3.5%Ag–0.5%Cu solder. © 2003 American Institute of Physics.
Resumo:
When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin-silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin-metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin-metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated. (C) 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4887-4901, 2009.