13 resultados para diluizione,olio,CFD,MCI

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General-purpose parallel processing for solving day-to-day industrial problems has been slow to develop, partly because of the lack of suitable hardware from well-established, mainstream computer manufacturers and suitably parallelized application software. The parallelization of a CFD-(computational fluid dynamics) flow solution code is known as ESAUNA. This code is part of SAUNA, a large CFD suite aimed at computing the flow around very complex aircraft configurations including complete aircraft. A novel feature of the SAUNA suite is that it is designed to use either block-structured hexahedral grids, unstructured tetrahedral grids, or a hybrid combination of both grid types. ESAUNA is designed to solve the Euler equations or the Navier-Stokes equations, the latter in conjunction with various turbulence models. Two fundamental parallelization concepts are used—namely, grid partitioning and encapsulation of communications. Grid partitioning is applied to both block-structured grid modules and unstructured grid modules. ESAUNA can also be coupled with other simulation codes for multidisciplinary computations such as flow simulations around an aircraft coupled with flutter prediction for transient flight simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract not available

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with heat transfer on a moving plate by mean of an impinging jet. Three different turbulence models are used and it turns out that Lam-Bremhorst model is in good agreement with measurements when Re is lower that 5000. In case of moving strip (ratio m=V strip/V jet lower than 1/3), there is almost no effect of m on Nusselt distribution in the stagnation region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal casting is a process governed by the interaction of a range of physical phenomena. Most computational models of this process address only what are conventionally regarded as the primary phenomena – heat conduction and solidification. However, to predict other phenomena, such as porosity formation, requires modelling the interaction of the fluid flow, heat transfer, solidification and the development of stressdeformation in the solidified part of the casting. This paper will describe a modelling framework called PHYSICA[1] which has the capability to stimulate such multiphysical phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FIREDASS (FIRE Detection And Suppression Simulation) project is concerned with the development of fine water mist systems as a possible replacement for the halon fire suppression system currently used in aircraft cargo holds. The project is funded by the European Commission, under the BRITE EURAM programme. The FIREDASS consortium is made up of a combination of Industrial, Academic, Research and Regulatory partners. As part of this programme of work, a computational model has been developed to help engineers optimise the design of the water mist suppression system. This computational model is based on Computational Fluid Dynamics (CFD) and is composed of the following components: fire model; mist model; two-phase radiation model; suppression model and detector/activation model. The fire model - developed by the University of Greenwich - uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation conducted by SINTEF. The mist model - developed by the University of Greenwich - is a Lagrangian particle tracking procedure that is fully coupled to both the gas phase and the radiation field. The radiation model - developed by the National Technical University of Athens - is described using a six-flux radiation model. The suppression model - developed by SINTEF and the University of Greenwich - is based on an extinguishment crietrion that relies on oxygen concentration and temperature. The detector/ activation model - developed by Cerberus - allows the configuration of many different detector and mist configurations to be tested within the computational model. These sub-models have been integrated by the University of Greenwich into the FIREDASS software package. The model has been validated using data from the SINTEF/GEC test campaigns and it has been found that the computational model gives good agreement with these experimental results. The best agreement is obtained at the ceiling which is where the detectors and misting nozzles would be located in a real system. In this paper the model is briefly described and some results from the validation of the fire and mist model are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium cells involve a range of complex physical processes which act simultaneously to provide a narrow satisfactory operating range. These processes involve electromagnetic fields, coupled with heat transfer and phase change, two phase fluid flow with a range of complexities plus the development of stress in the cell structure. All of these phenomena are coupled in some significant sense and so to provide a comprehensive model of these processes involves their representation simultaneously. Conventionally, aspects of the process have been modeled separately using uncoupled estimates of the effects of the other phenomena; this has enabled the use of standard commercial CFD and FEA tools. In this paper we will describe an approach to the modeling of aluminium cells which describes all the physics simultaneously. This approach uses a finite volume approximation for each of the phenomena and facilitates their interactions directly in the modeling-the complex geometries involved are addressed by using unstructured meshes. The very challenging issues to be overcome in this venture will be outlined and some preliminary results will be shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of CFD software that can easily be used and produce high efficiency on a wide range of parallel computers is extremely limited. The investment and expertise required to parallelise a code can be enormous. In addition, the cost of supercomputers forces high utilisation to justify their purchase, requiring a wide range of software. To break this impasse, tools are urgently required to assist in the parallelisation process that dramatically reduce the parallelisation time but do not degrade the performance of the resulting parallel software. In this paper we discuss enhancements to the Computer Aided Parallelisation Tools (CAPTools) to assist in the parallelisation of complex unstructured mesh-based computational mechanics codes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.