3 resultados para crevice corrosion

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion of steel reinforcement bars in reinforced concrete structures exposed to severe marine environments usually is attributed to the aggressive nature of chloride ions. In some cases in practice corrosion has been observed to commence already within a few years of exposure even with considerable concrete cover to the reinforcement and apparently high quality concretes. However, there are a number of other cases in practice for which corrosion initiation took much longer, even in cases with quite modest concrete cover and modest concrete quality. Many of these structures show satisfactory long-term structural performance, despite having high levels of localized chloride concentrations at the reinforcement. This disparity was noted already more than 50 years ago, but appears still not fully explained. This paper presents a systematic overview of cases reported in the engineering and corrosion literature and considers possible reasons for these differences. Consistent with observations by others, the data show that concretes made from blast furnace cements have better corrosion durability properties. The data also strongly suggest that concretes made with limestone or non-reactive dolomite aggregates or sufficiently high levels of other forms of calcium carbonates have favourable reinforcement corrosion properties. Both corrosion initiation and the onset of significant damage are delayed. Some possible reasons for this are explored briefly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on extensive research on reinforcing steel corrosion in concrete in the past decades, it is now possible to estimate the effect of the progression of reinforcement corrosion in concrete infrastructure on its structural performance. There are still areas of considerable uncertainty in the models and in the data available, however This paper uses a recently developed model for reinforcement corrosion in concrete to improve the estimation process and to indicate the practical implications. In particular stochastic models are used to estimate the time likely to elapse for each phase of the whole corrosion process: initiation, corrosion-induced concrete cracking, and structural strength reduction. It was found that, for practical flexural structures subject to chloride attacks, corrosion initiation may start quite early in their service life. It was also found that, once the structure is considered to be unserviceable due to corrosion-induced cracking, there is considerable remaining service life before the structure can be considered to have become unsafe. The procedure proposed in the paper has the potential to serve as a rational tool for practitioners, operators, and asset managers to make decisions about the optimal timing of repairs, strengthening, and/or rehabilitation of corrosion-affected concrete infrastructure. Timely intervention has the potential to prolong the service life of infrastructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For existing reinforced concrete structures exposed to saline or marine conditions, there is an increasing engineering interest in their remaining safety and serviceability. A significant factor is the corrosion of steel reinforcement. At present there is little field experience and other data available. This limits the possibility for developing purely empirical models for strength and performance deterioration for use in structural safety and serviceability assessment. An alternative approach using theoretical concepts and probabilistic modeling is proposed herein. It is based on the evidence that the rate of diffusion of chlorides is influenced by internal damage to the concrete surrounding the reinforcement. This may be due to localized stresses resulting from external loading or through concrete shrinkage. Usually, the net effect is that the time to initiation of active corrosion is shortened, leading to greater localized corrosion and earlier reduction of ultimate capacity and structural stiffness. The proposed procedure is applied to an example beam and compared to experimental observations,including estimates of uncertainty in the remaining ultimate moment capacity and beam stiffness. Reasonably good agreement between the results of the proposed procedure and the experiment was found