2 resultados para context-aware access control
em Greenwich Academic Literature Archive - UK
Resumo:
This paper proposes a vehicular control system architecture that supports self-configuration. The architecture is based on dynamic mapping of processes and services to resources to meet the challenges of future demanding use-scenarios in which systems must be flexible to exhibit context-aware behaviour and to permit customization. The architecture comprises a number of low-level services that provide the required system functionalities, which include automatic discovery and incorporation of new devices, self-optimisation to best-use the processing, storage and communication resources available, and self-diagnostics. The benefits and challenges of dynamic configuration and the automatic inclusion of users' Consumer Electronic (CE) devices are briefly discussed. The dynamic configuration and control-theoretic technologies used are described in outline and the way in which the demands of highly flexible dynamic configuration and highly robust operation are simultaneously met without compromise, is explained. A number of generic use-cases have been identified, each with several specific use-case scenarios. One generic use-case is described to provide an insight into the extent of the flexible reconfiguration facilitated by the architecture.
Resumo:
This paper describes a highly flexible component architecture, primarily designed for automotive control systems, that supports distributed dynamically- configurable context-aware behaviour. The architecture enforces a separation of design-time and run-time concerns, enabling almost all decisions concerning runtime composition and adaptation to be deferred beyond deployment. Dynamic context management contributes to flexibility. The architecture is extensible, and can embed potentially many different self-management decision technologies simultaneously. The mechanism that implements the run-time configuration has been designed to be very robust, automatically and silently handling problems arising from the evaluation of self- management logic and ensuring that in the worst case the dynamic aspects of the system collapse down to static behavior in totally predictable ways.