5 resultados para complex polymerization method
em Greenwich Academic Literature Archive - UK
Resumo:
CFD modelling of 'real-life' processes often requires solutions in complex three dimensional geometries, which can often result in meshes where aspects of it are badly distorted. Cell-centred finite volume methods, typical of most commercial CFD tools, are computationally efficient, but can lead to convergence problems on meshes which feature cells with high non-orthogonal shapes. The vertex-based finite volume method handles distorted meshes with relative ease, but is computationally expensive. A combined vertex-based - cell-centred (VB-CC) technique, detailed in this paper, allows solutions on distorted meshes that defeat purely cell-centred physical models to be employed in the solution of other transported quantities. The VB-CC method is validated with benchmark solutions for thermally driven flow and turbulent flow. An early application of this hybrid technique is to three-dimensional flow over an aircraft wing, although it is planned to use it in a wide variety of processing applications in the future.
Resumo:
It is widely accepted that volumetric contraction and solidification during the polymerization process of restorative composites in combination with bonding to the hard tissue result in stress transfer and inward deformation of the cavity walls of the restored tooth. Deformation of the walls decreases the size of the cavity during the filling process. This fact has a profound influence on the assumption-raised and discussed in this paper-that an incremental filling technique reduces the stress effect of composite shrinkage on the tooth. Developing stress fields for different incremental filling techniques are simulated in a numerical analysis. The analysis shows that, in a restoration with a well-established bond to the tooth-as is generally desired-incremental filling techniques increase the deformation of the restored tooth. The increase is caused by the incremental deformation of the preparation, which effectively decreases the total amount of composite needed to fill the cavity. This leads to a higher-stressed tooth-composite structure. The study also shows that the assessment of intercuspal distance measurements as well as simplifications based on generalization of the shrinkage stress state cannot be sufficient to characterize the effect of polymerization shrinkage in a tooth-restoration complex. Incremental filling methods may need to be retained for reasons such as densification, adaptation, thoroughness of cure, and bond formation. However, it is very difficult to prove that incrementalization needs to be retained because of the abatement of shrinkage effects.
Resumo:
An aerodynamic sound source extraction from a general flow field is applied to a number of model problems and to a problem of engineering interest. The extraction technique is based on a variable decomposition, which results to an acoustic correction method, of each of the flow variables into a dominant flow component and a perturbation component. The dominant flow component is obtained with a general-purpose Computational Fluid Dynamics (CFD) code which uses a cell-centred finite volume method to solve the Reynolds-averaged Navier–Stokes equations. The perturbations are calculated from a set of acoustic perturbation equations with source terms extracted from unsteady CFD solutions at each time step via the use of a staggered dispersion-relation-preserving (DRP) finite-difference scheme. Numerical experiments include (1) propagation of a 1-D acoustic pulse without mean flow, (2) propagation of a 2-D acoustic pulse with/without mean flow, (3) reflection of an acoustic pulse from a flat plate with mean flow, and (4) flow-induced noise generated by the an unsteady laminar flow past a 2-D cavity. The computational results demonstrate the accuracy for model problems and illustrate the feasibility for more complex aeroacoustic problems of the source extraction technique.
Resumo:
Rule testing in transport scheduling is a complex and potentially costly business problem. This paper proposes an automated method for the rule-based testing of business rules using the extensible Markup Language for rule representation and transportation. A compiled approach to rule execution is also proposed for performance-critical scheduling systems.
Resumo:
A number of research groups are now developing and using finite volume (FV) methods for computational solid mechanics (CSM). These methods are proving to be equivalent and in some cases superior to their finite element (FE) counterparts. In this paper we will describe a vertex-based FV method with arbitrarily structured meshes, for modelling the elasto-plastic deformation of solid materials undergoing small strains in complex geometries. Comparisons with rational FE methods will be given.