4 resultados para compartment syndrome

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pyrolysis model for noncharring solid fuels is presented in this paper. Model predictions are compared with experimental data for the mass loss rates of polymethylmethacrylate (PMMA) and very good agreement is achieved. Using a three-dimensional CFD environment, the pyrolysis model is then coupled with a gas-phase combustion model and a thermal radiation model to simulate fire development within a small compartment. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic post-flashover linear correlation with constant of proportionality 0.38 kg/sm5=2. The simulation results also suggest that the model is capable of predicting the onset of "flashover" and "post-flashover" type behaviour within the fire compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated fire spread model is presented in this study including several sub-models representing different phenomena of gaseous and solid combustion. The integrated model comprises of the following sub-models: a gaseous combustion model, a thermal radiation model that includes the effects of soot, and a pyrolysis model for charring combustible solids. The interaction of the gaseous and solid phases are linked together through the boundary conditions of the governing equations for the flow domain and the solid region respectively. The integrated model is used to simulate a fire spread experiment conducted in a half-scale test compartment. Good qualitative and reasonable quantitative agreement is achieved between the experiment and numerical predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present some work concerned with the development and testing of a simple solid fuel combustion model incorporated within a Computational Fluid Dynamics (CFD) framework. The model is intended for use in engineering applications of fire field modeling and represents an extension of this technique to situations involving the combustion of solid fuels. The CFD model is coupled with a simple thermal pyrolysis model for combustible solid noncharring fuels, a six-flux radiation model and an eddy-dissipation model for gaseous combustion. The model is then used to simulate a series of small-scale room fire experiments in which the target solid fuel is polymethylmethacrylate. The numerical predictions produced by this coupled model are found to be in very good agreement with experimental data. Furthermore, numerical predictions of the relationship between the air entrained into the fire compartment and the ventilation factor produce a characteristic linear correlation with constant of proportionality 0.38 kg/sm5/12. The simulation results also suggest that the model is capable of predicting the onset of "flashover" type behavior within the fire compartment.